
International Journal of Computer Vision 68(1), 43–52, 2006
c© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s11263-005-4841-0

Wide Baseline Matching between Unsynchronized Video Sequences

LIOR WOLF
Massachusetts Institute of Technology, The Center for Biological and Computational Learning, Cambridge, MA

liorwolf@mit.edu

ASSAF ZOMET
Department of Computer Science, Columbia University, New York, NY

zomet@cs.columbia.edu

Received December, 2002; Accepted February, 2005

First online version published in March, 2006

Abstract. 3D reconstruction of a dynamic scene from features in two cameras usually requires synchronization
and correspondences between the cameras. These may be hard to achieve due to occlusions, different orientation,
different scales, etc. In this work we present an algorithm for reconstructing a dynamic scene from sequences
acquired by two uncalibrated non-synchronized fixed affine cameras.

It is assumed that (possibly) different points are tracked in the two sequences. The only constraint relating the two
cameras is that every 3D point tracked in one sequence can be described as a linear combination of some of the 3D
points tracked in the other sequence. Such constraint is useful, for example, for articulated objects. We may track
some points on an arm in the first sequence, and some other points on the same arm in the second sequence. On the
other extreme, this model can be used for generally moving points tracked in both sequences without knowing the
correct permutation. In between, this model can cover non-rigid bodies with local rigidity constraints.

We present linear algorithms for synchronizing the two sequences and reconstructing the 3D points tracked in
both views. Outlier points are automatically detected and discarded. The algorithm can handle both 3D objects and
planar objects in a unified framework, therefore avoiding numerical problems existing in other methods.

Keywords: structure from motion, video synchronization, wide base-line matching

1. Introduction

Many traditional algorithms for reconstructing a 3D
scene from two or more cameras require correspon-
dences between the images. This becomes challenging
in some cases, for example when the cameras have dif-
ferent zoom factors, or large vergence (wide-baseline
stereo) (Tuytelaars and Van Gool, 2000; Schaffalitzky

This work was done while the authors were PhD students in
the School of Computer Science and Engineering, the Hebrew
University of Jerusalem.

and Zisserman, 2001). Using a moving video camera
rather than a set of static cameras helps in overcoming
some of the correspondence problems, but may de-
crease the stability and accuracy of the reconstruction.
Moreover, the reconstruction from a moving camera
becomes harder if not impossible when the scene is
not rigid.

In this paper we present an algorithm for recon-
structing a non-rigid scene from two fixed video
cameras. It is assumed that feature points are tracked
for each of the cameras, but no correspondences are
available between the cameras. Moreover, The points
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tracked by the two cameras may be different. Instead
we use a weaker assumption: Every 3D point tracked
in the second sequence can be described as a linear
combination of some of the 3D points tracked in the
first sequence. The coefficients of this linear combina-
tion are unknown but fixed throughout the sequence.
Since the cameras view the same scene, this assump-
tion is reasonable. For example, when a point tracked
in the second camera belongs to some rigid part of
the scene, it can be expressed as a linear combination
of some other points on the same part, tracked in the
first camera.

Our non-rigidity concept is quite strong. We put no
explicit limitation on the motion of the points from
one time to another. The linear combination with fixed
coefficients assumption suggests that there exist local
rigid structure or that some of the points, which are
allowed to move freely, are tracked in both sequences
(although we do not know the correspondence between
the sequences).

This paper is divided to two main sections. First,
we show how to synchronize two video sequences.
This can be used for any application requiring camera
synchronization, as well as for action indexing. Then,
based on this synchronization, we show how to use
the measurement from all frames simultaneously for
reconstructing the non-rigid scene at different times.
We conclude by experiments.

1.1. Previous Work

Using several sequences without correspondences be-
tween them was done in Caspi and Irani (2001) for
alignment in space and time, and was followed by
Wolf and Zomet (2002) for synchronization and self-
calibration of cameras on a stereo rig. These algorithms
compute the motion of each camera independently,
which is problematic for dynamic scenes. Then they
combine the motions of the cameras to express the
inter-camera rigidity. In Dornaika and Chung (1999),
motion correspondences were used to extract stereo
correspondences. It was assumed that the scene was
rigid and that the geometry of the two perspective cam-
eras is known.

A second class of related work included algorithms
for reconstruction of non-rigid scenes from feature
points. A solution for 3D reconstruction of k moving
bodies from a sequence of affine views was presented in
Costeira and Kanade (1998) and later on in Kanatani
(2001) using factorization. Improved solutions were

suggested in Zelnik-Manor and Irani (2003) and Vi-
dal and Hartley (2004).These algorithms exploit the
fact that there are more measurements arising from
each one of the objects than the minimal number re-
quired to span this motion (usually the number of bod-
ies is small). This redundancy is used to identify the
motions. In this work the rigidity relations between
points is weaker, allowing many different motions of
small bodies with different dimensions. For example,
local rigidity constraints of lines and planes can be
exploited to express non-rigid bodies, e.g. trees and
clothes. In the experiments we compared our method
to Costeira and Kanade (1998), and showed that even
in a k body setting as well it is worthwhile using a
second camera.

Class-based methods also address reconstruction of
dynamic scenes (Vetter and Poggio, 1997; Leventon
and Freeman, 1998; Bregler et al., 2000, Brand, 2001).
These assume that the points in 3D can be expressed
as a linear combination of a small morph basis. The
basis can be either provided as a learned prior (Lev-
enton and Freeman, 1998; Vetter and Poggio, 1997),
or computed by the algorithm (Bregler et al., 2000;
Brand, 2001). In this work, rather than expressing all
the points as linear combinations of some morph ba-
sis, we set some of the points as linear combination of
other points, thus expressing local rigidity of subsets of
the features. Still, the assumptions of the class-based
approach and the presented work can be expressed in a
similar way: The matrix containing the positions of the
3D points in different times has a low rank. Therefore,
a single-camera factorization algorithm designed for
class based setting (Bregler et al., 2000) can be adapted
also for reconstruction in our proposed setting.

The method proposed in this paper uses two cam-
eras and can be seen as a compromise between hav-
ing the prior 3D model given to the algorithm (Vetter
and Poggio, 1997; Leventon and Freeman, 1998) and
computing the model from the data using factorization
(Bregler et al., 2000; Brand, 2001). By adding a sec-
ond camera we obtain two main advantages over the
factorization methods. First, in factorization methods
there is an ambiguity expressed in an unknown invert-
ible matrix between the two factors. In contrast, in our
approach, the ambiguity is resolved. Second, the pro-
posed method is robust to outliers as it includes a way
to discard outliers by testing each feature separately.
Using factorization on data with outliers degrades the
quality of the results. We elaborate more on this point
in Section 4.1.
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2. Formal Statement

Assume two affine cameras (2 × 4 matrices) view
different 3D points across time 1 ≤ t ≤ T. Let P (t)

j ∈
�3, j = 1 . . . n, be the 3D points tracked by the first
camera.(

x (t)
i
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i

)
=
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Instead of looking directly on the point measure-
ments (x, y)� we look on the motion relative to some
reference frame:(
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where d P (t)
i = P (t)

i − P (o)
i is the motion of point i from

the time of the reference frame (the first frame) to the
time of frame t, and ui

(t), vi
(t) denote the motion of

point i in the image.

We will use the coordinate system of the first cam-
era as our world (3D) coordinate system and so our
projections onto the two cameras are given by:(

u(t)
i

v
(t)
i

)
=

(
1 0 0
0 1 0

)
d P (t)

i ,

(
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where we denote points related to the second camera
using a similar notation with a ˆhat.

The assumption we make in this work is that every
3D point tracked in the second sequence P̂ (t)

i , 1 ≥
i ≥ m can be expressed as a linear combination of the
points tracked in the first sequence:

P̂ (t)
i =

(
P (t)

1 P (t)
2 . . . P (t)

n

)
Qi . (4)

Here Qi is the vector specifying the linear combina-
tion coefficients, such that

∑
j Qi ( j) = 1.

Note that this linear combination applies also to the
3D displacements d P̂ (t)

i and so:
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â1 â2 â3
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Where d Z (t)
i are the displacements along the Z axis

of the points tracked in the first sequence and the last
equality is by substituting the projection equation of
the first camera.

Reorganizing the terms we get:
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Let Ai = (Qi (1)â1, Qi (1)â2, Qi (1)â3, Qi (2)â1,

Qi (2)â2, . . . , Qi (n)â3), and let Bi be the simi-
lar expression involving b̂1, b̂2, b̂3. Let M̂ be the
matrix whose rows are A1, . . . , Am, B1, . . . , Bm .
and let C be the matrix whose columns are
(u(t)

1 , v
(t)
1 , Z (t)

1 , . . . , u(t)
n , v(t)

n , Z (t)
n ) for 1 ≤ t ≤ T .

Note that m̂ is point-dependent, but does not vary
with time, whereas the matrix C is time-dependent, but
does not depend on points in the second sequence.

Let Û and V̂ be the matrices containing the flow in
the second sequences:
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Stacking all Eq. (7) we get:

(
Û T

V̂ T

)
2m×T

= M̂2m×3nC3n×T (9)

A similar expression can be derived for the first
camera as well:

(
U T

V T

)
2n×T

= M2n×3nC3n×T (10)

These equations will be used in both the synchro-
nization algorithm (Section 3) and the 3D reconstruc-
tion algorithm (Section 4).

3. Synchronization and Action Indexing

Given two sequences of a dynamic scene in the above
setting, they are first synchronized. Having synchro-
nization, we later describe how to compute the struc-
ture of the scene across time. The ability to synchronize
two sequences of the same action can be used for other
dynamic-scene applications such as action indexing.
Two matching actions should have a minimal synchro-
nization error.

Consider the matrix obtained by stacking the flow
in both sequences side by side: E = (U, V, Û , V̂ ).
This is a matrix of size T × (2n + 2m) and since
we consider long sequences we expect its rank to be
(2n + 2m). However, this holds only when there is no
connection between the sequences, i.e when they are
not synchronized. Combining Eqs. (9) and (10) we get:

ET =
(

M
M̂

)
(2m+2m)×3n

C3n×T (11)

therefore the rank of E is bounded by 3n. We propose
to synchronize the sequences by examining the rank of
the matrix E for various temporal shifts between the
sequences.

The upper bound in Eq. (11) is usually not tight,
depending on the rigidity of the scene. For example,
when the scene contains k rigid bodies the rank is
bounded by 3k. Still, we expect the rank of the matrix
E to decrease in the synchronized case at least as much
as it decreases in the unsynchronized case.

Outliers (points which do not satisfy our assump-
tions even remotely) pose a different kind of problem
for this rank bound, since they may increase the rank
of the matrix E. However for outliers we expect the

rank of the matrix E to increase both for the synchro-
nized case and for the unsynchronized case by the same
amount. Therefore in both cases (partially rigid scenes
and outliers) we expect the rank in the synchronized
case to be lower than the rank in the unsynchronized
case).

In practice, however, synchronizing by examining
the rank of a matrix is problematic since due to noise
our matrices will almost always be of full rank. In order
to deal with this we propose two solutions. The first so-
lution examines the effective rank of the measurements.
The second solution examines the principal angles be-
tween the space of measurements of both sequences.

The first solution, instead of bounding the rank of E
by 3n, uses a heuristic to define n̂, the effective rank
of (U,V). We compute the singular values s1,\ldots ,sh1

of (U,V), and set N = argmin j {
∑2 j

k=1 sk > J } for
some threshold J (we used J = 0.99

∑h1
k=1 sk). This is

equivalent to finding the minimal rank of a matrix in
a given error bound under Frobenius norm.

In order to synchronize we select the synchroniza-
tion for which the algebraic measure g(E) defined be-
low is minimized. The minimization is carried out
over all possible synchronizations where each possi-
ble synchronization provides a different matrix E. Let
e1, . . . , eh2 be all the singular values of E. Then g is
defined by:

g(E) =
h2∑

k=3n̂+1

ek (12)

g measures the amount of energy in the matrix beyond
the expected rank bound. It is expected that if the rank
bound on E is violated by noise, this measure will be
low, and otherwise, if it is broken by non-synchronized
data, this measure will be high.

The second solution is based on the idea that for
synchronized sequences the linear subspaces spanned
by the columns of (U,V) and by the columns of (U′, V′)
intersect. The rank of the intersection is 2n.

A stable way of measuring the extent of intersection
between two linear subspaces is by using the principal
angles (Golub and Loan, 1996). Let UA, UB represent
two linear subspaces of Rn . The principal angles 0 ≤
θ1 ≤ · · · ≤ θk ≤ (π/2) between the two subspaces are
uniquely defined as:

cos(θk) = max
u∈UA

max
v∈UB

u�v

subject to: u�u = v�v = 1, u�ui = 0, v�vi = 0,

i = 1, . . . , k − 1
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A convenient way to compute the principal angles is
via the QR factorization, as follows. Let A = Q A RA

and B = Q B RB where Q is an orthonormal basis of
the respective subspace and R is a upper-diagonal k × k
matrix with the Gram-Schmidt coefficients represent-
ing the columns of the original matrix in the new or-
thonormal basis. The singular values σ1, . . . , σk of the
matrix Q A Q B are the principal angles cos(θi ) = σi .

As mentioned above the linear subspaces spanned by
the columns of [U, V] and of [U′,V′] intersect and the
rank of the intersection is 2n. Hence, the first 2n prin-
cipal angles between these column spaces vanish. In
practice we are affected by noise and expect those first
principal angles to be close to zero. In order to achieve
synchronization we consider a function of the first few
principal angles (e.g. their average). This function is
computed for every possible displacement and the syn-
chronization is chosen as to minimize this function.

3.1. Direct Synchronization using Brightness
Measurements

The synchronization procedures described above are
based on having a set of points tracked over time in each
one of the video sequences. The accuracy of our results
is therefore affected by the accuracy of the tracker.
Most trackers have difficulties maintaining accurate
positions for all tracked points over time, especially in
dynamic scenes.

To overcome this, we present a method that uses
brightness measurements instead of tracked points, fol-
lowing the work of Irani (1999). In Irani (1999) it was
shown that the matrices U and V are closely related to
matrices that are computed directly from the brightness
values of the input frames I (t), 0 ≤ t ≤ T . Specifi-
cally, they are computed from the spatial derivatives
Ix and Iy of the reference image (t = 0) and the frame
differences I j

t = I ( j) − I (0):

[U, V ]T ×2n

[
Ā, B̄
B̄, C̄

]
2n×2n

= [G, H ]T ×2n (13)

Where Ā, B̄ and C̄ are diagonal n × n matrices
with the diagonal elements being Āii = ∑

k(Ix (k))2,
B̄ii = ∑

k(Ix (k)Iy(k)) and C̄ii = ∑
k(Iy(k))2 re-

spectively, and the summation is over a small neigh-
borhood around pixel i. The elements of G and H
are similarly given by Hi j = −∑

k Ix (k)I i
t (k) and

Hi j = −∑
k Iy(k)I i

t (k).

In practice we compute matrices G and H only for
those pixels for which there is enough gradient infor-
mation in their neighborhood, hence the matrix [ Ā, B̄

B̄, C̄ ]
is invertible and the column space of U and V is the
same as the column space of G and H respectively. A
similar constraint connects the matrices in the second
sequence U′ and V′ to measurement matrices G′ and
H′ computed on this sequence. We can therefore make
the observations below, which are analogous to the ob-
servations we made earlier on the ranks of U, V, U′, V′.
In the synchronized case:

• The effective rank N of the matrix [U, V] is the same
as the effective rank of the matrix [G, H].

• The effective rank of the matrix [G, H, G′, H′] is
bounded by 3N.

• The column spaces of the matrix [G, H] and of the
matrix [G′.H′] intersect in a linear subspace of rank
N.

Based on these observations, we use synchronization
methods analogous to those presented in section 3.
A care should be taken as for the number of frames
used. The constraint in Eq. (13) assumes infinitesimal
motion. This assumption may hold only a few frames
away from the reference frame. In practice we divide
both sequences to small continuous fragments (small
windows in time) of length up to 15 frames. We set the
reference frame as the middle frame of each fragment,
and compute the measurement matrices G and H for
each such fragment separately. We then compare each
fragment in the first sequence to each fragment in the
second sequence, and compute an algebraic error.

Let k, k′ be the number of fragments we extract from
each sequence. The comparison of fragments between
both sequences results in a matrix of size k × k ′. A
synchronization will appear as the line in this matrix
which has the minimum average value . The offset
of the line determines the shift of the synchronization
and the slope of it determines the ratio of frame rates
between the sequences.

4. Reconstruction

Given the synchronization of the two sequences, the
next stage is 3D reconstruction. Let D = null([ U�

V � ])
be a matrix whose columns are all orthogonal to the
rows of [ U�

V � ] The rows of [ U�
V � ] are the rows of C which

correspond to motion along the X and Y axes (see Eq.
(9)). Hence the first two out of every 3 rows in CD
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vanish (all which is left is the information regarding
the Z coordinates of the displacements).

By Multiplying both sides of eq. (9) with D we define
a matrix K:

K =
(

Û
V̂

)
D = M̂C D

=




â3 Q1

b̂3 Q1
...

â3 Qm

b̂3 Qm







Z (1)
1 . . . Z (T )

1
...

. . .
...

Z (1)
n . . . Z (T )

n


 D (14)

Observe that each odd row of K equals the next row
of K multiplied by the ratio r = â3/b̂3. Hence this
ratio can be recovered by dividing the rows. For added
robustness we take the median of all the measurements
of r from all points. In Section 4.1 we elaborate on the
robustness of the algorithm.

Consider the vector l = (1 −r )�. l is a direction
orthogonal to the projection of the Z axis to the second
image. Using this direction we eliminate the unknown
depths of the points.

We multiply both sides of eq. (6) with l� and get:

l�


 ˆu(t)

i

ˆ
v

(t)
i


 = (c1 c2)

(
u(t)

1 u(t)
2 ... u(t)

n

v
(t)
1 v

(t)
2 ... v(t)

n

)
Qi (15)

Where c1 = l�(â1, b̂1), c2 = l�(â2, b̂2), and the
third row of the projection matrix just vanished
(l�(â3, b̂3) = 0).

This is a bilinear system in the unknowns c1, c2 and
Qi . For each i we have →T equations. We solve this
system by linearization, i.e by defining a vector of
unknowns ui = (c1 Qi , c2 Qi ) and converting the equa-
tions into a linear system.

From ui recovering Qi up to scale is is done by
factoring the elements of ui as a 2 × n rank 1 matrix.

Figure 1. Sequences synchronization for cameras with different zoom factors (Fig. 1(a) and for cameras with large vergence (Fig. 1(b).
Corresponding frames from the sequences of the first graph are shown in c) and d). The first graph reflects the oscillations in the input motion
(walking people). The sequences of the second graph are the same as in Fig. 4 The graphs show the algebraic error g vs. frame offset.
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Figure 2. Sequences synchronization for cameras with large vergence using the direct method (Section 3.1). Panel (a) shows the distance
(minimal principal angle, see text) between temporal windows at different temporal shifts in the two sequences. By averaging diagonal directions
in this matrix, one achieves a score for different synchronizations, as shown in panel (b). The cyclic nature of the motion can be viewed in the
graph. Corresponding frames from the sequences of the first graph are shown in (c) and (d).

c1, c2> can be recovered using all of ui , since they are
not point-dependent. Then the scale is adjusted such
that

∑
i Qi = 1.

Once the Qi are recovered we can recover the points
in the first image corresponding to the points tracked
in the second image:

(
1 0 0 0
0 1 0 0

)
P̂ (t)

i

=
(

1 0 0 0
0 1 0 0

)(
P (t)

1 P (t)
2 . . . P (t)

n

)

Qi =
(

x (t)
1 x (t)

2 . . . x (t)
n

y(t)
1 y(t)

2 . . . y(t)
n

)
Qi (16)

The problem of reconstructing the points tracked in
the second image P̂ (t)

i is hence reduced to a simple
stereo problem in each frame.

Reconstructing P (t)
i from P̂ (t)

i is possible by taking
the pseudo-inverse of the matrix whose columns are
Qi , i = 1 . . . m.
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Figure 3. Feature reprojection between two sequences of a non-rigid body.

4.1. Outlier Rejection

The basis of our algorithm and many similar fea-
ture based-algorithms is the assumption that the input
points fit some model and were tracked correctly along
the sequence. Outlier points, e.g. points which were
not tracked properly, may have in some cases a strong
effect on the accuracy of the results. In this section
we show that outlier points tracked in the first camera
have negligible effect on the results, and outlier points
tracked the second camera can be detected automati-
cally. Hence the algorithm is robust to outlier tracks
from both sequences.

The first step in the algorithm consists of comput-
ing the matrix D, i.e. finding the subspace orthog-
onal to the 2D trajectories of all points tracked in
the first camera. In case of outlier points, this sub-
space may be reduced, but still the resulting subspace
is orthogonal to all inlier trajectories. Therefore the
computation of r = â3/b̂3 described in the previ-
ous section is not influenced by outliers in the first
sequence. As for the computation of Qi —3D points
in the second camera are a combination of some of
the inliers 3D points tracked in the first camera. The
coefficients of Qi corresponding to the outlier points
vanish.
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Outliers tracks in the first sequence therefore have
little effect as long as there are not too many of them.
We show next how to eliminate outliers tracks from the
second sequence. For each point in the second image,
several measurements of the ratio r can be computed.
A simple test, e.g. by the measuring variance of this
value for each point and across the points can be used
to reject outliers.

In our experiments usually 2n > T > 3n̂, i.e. the
matrix B̂ had rank T due to noise, but the effective rank
2N was smaller. For numerical reasons we chose D to
be the vector corresponding to the smallest singular
value, and therefore every point in the second image
had a single measurement of the ratio r. Outlier points
were chosen by computing the median of the r values
of all points, and discarding points with r value far
from the median.

5. Experiments

We have tested our algorithm on scenes of moving
people. The first set of experiments tested the cam-
era synchronization application. Two video sequences
were captured by two unsynchronized cameras view-
ing the same non-rigid scene. In the first experiment we
used tracked points, and examined the algebraic error
g, as explained in Section 3, at different time shifts, and
chose the shift with the minimal error. Results are pre-
sented in Fig. 1. In the second experiment we have used
the direct method described in Section 3.1. Since this
method assumes small image motion, we applied it to
small temporal windows w(t) (typically of 15 consecu-
tive frames), and smoothed and decimated the images.
For each such pair of windows w(t1),w(t2) from the
two sequences, we measured the smallest principal an-
gles between the subspaces defined on these windows.
A typical result of this process is shown in Fig. 2(a).
The matrix contains for each pair of times →t1, t2 the
principal angles between the linear spaces computed
for w(t1) on the first sequence and w(t2) on the second
sequence. Since both →t1, t2 increment by the same
shift, the optimal synchronization is visualized by a
45◦ dark line in fig. 2(a). The mean value along 45◦

lines is shown in Fig. 2(b). Corresponding frames of
the two synchronized sequences are shown in Fig. 2-
(c–f). We have confirmed these results by manually
synchronizing the input sequences.

The second experiment tested the reprojection stage.
Using the proposed algorithm we established cor-
respondences between the two cameras, by transfer-

Figure 4. Feature clustering for k-body scene, a comparison with
the Costeira-Kanade algorithm. Fig. 4(a) and (b) show examples of
input images taken by the two cameras at different times. Note the
large vergence between the cameras. Fig. 4(c) and (d) show the two
clusters found by the method in this paper. Fig. 4(e) and (f) show
the two clusters found by the Costeira-Kanade K-body factorization
algorithm.

ring tracked points from one sequence to the other
sequence. The results are presented in Fig. 3. Unfor-
tunately, more than 50% of the tracks were not very
good, and our algorithm was not able to handle these
tracks as we hoped. So while in the synthetic experi-
ments the algorithm proved to be robust to outliers, in
the presented experiment we have chosen good tracks
in both sequences manually.

5.1 Clustering

In order to show the benefits of using our algorithm
for the settings of independently moving rigid bod-
ies we implemented the algorithm of Costeira and
Kanade (1998) and applied it to each of the two se-
quences separately. Based on the results we clustered
the points to different rigid objects, thus comparing
the results on real noisy data. The clustering method
for both algorithms was based on an affinity matrix
of the points. In our algorithm an affinity matrix can
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be defined by the normalized correlation between the
coefficient vectors Qi . In Costeira and Kanade (1998)
an affinity matrix was defined in a similar manner. As
pointed out in Kanatani (2001), once the affinity matrix
is defined, the choice of the clustering criteria is arbi-
trary. We have used a software package (ClusteringPro-
gram http://odur.let.rug.nl/kleiweg/clustering/ cluster-
ing.html.) including several clustering algorithms, and
chose the Ward method which brought the best results
for both algorithms. The results, presented in Fig. 4,
show that the use of an additional camera in our algo-
rithm improves the results.

6. Discussion

Finding correspondences is challenging, especially be-
tween views that are separated by a wide baseline. In
this work we have addressed the correspondence prob-
lem in a dynamic scene. We showed that by using a
video rather than a single image, it is easier to resolve
the correspondence problem. This is done by tracking
points in each video sequence, and by using a sim-
ple and realistic constraint to relate the points tracked
in the two video sequences. The proposed algorithm
is simple, linear and robust to outliers. It combines
the measurements from all video frames in a single
computation, thus minimizing the error in all frames
simultaneously. All in all, it provides a simple and ro-
bust solution for reconstructing a dynamic 3D scene
from non-synchronized video cameras.

Note

1. We assume T > 2N, otherwise synchronization is not possible. If
T < 2n, we take D to be the vector corresponding to the smallest
singular value.
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