
Characterizing, Exploiting, and Detecting DMA Code
Injection Vulnerabilities in the Presence of an IOMMU

Alex Markuze
Technion & VMware

Shay Vargaftik
VMware

Gil Kupfer
Technion

Boris Pismenny
Technion

Nadav Amit
VMware

Adam Morrison
Tel Aviv University

Dan Tsafrir
Technion & VMware

Abstract
Direct memory access (DMA) renders a system vulnerable to
DMA attacks, in which I/O devices access memory regions
not intended for their use. Hardware input–output memory
management units (IOMMU) can be used to provide protec-
tion. However, an IOMMU cannot prevent all DMA attacks
because it only restricts DMA at page-level granularity, lead-
ing to sub-page vulnerabilities.

Current DMA attacks rely on simple situations in which
write access to a kernel pointer is obtained due to sub-page
vulnerabilities and all other attack ingredients are available
and reside on the same page. We show that DMA vulnerabili-
ties are a deep-rooted issue and it is often the kernel design
that enables complex and multistage DMA attacks. This work
presents a structured top-down approach to characterize, ex-
ploit, and detect them.

To this end, we first categorize sub-page vulnerabilities
into four types, providing insight into the structure of DMA
vulnerabilities. We then identify a set of three vulnerability
attributes that are sufficient to execute code injection attacks.

We built analysis tools that detect these sub-page vulnera-
bilities and analyze the Linux kernel. We found that 72% of
the device drivers expose callback pointers, which may be
overwritten by a device to hijack the kernel control flow.

Aided by our tools’ output, we demonstrate novel code
injection attacks on the Linux kernel; we refer to these as
compound attacks. All previously reported attacks are single-
step, with the vulnerability attributes present in a single page.
In compound attacks, the vulnerability attributes are initially
incomplete. However, we demonstrate that they can be ob-
tained by carefully exploiting standard OS behavior.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’21, April 26–29, 2021, Online, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-8334-9/21/04. . . $15.00
https://doi.org/10.1145/3447786.3456249

ACM Reference Format:
Alex Markuze, Shay Vargaftik, Gil Kupfer, Boris Pismenny, Na-
dav Amit, Adam Morrison, and Dan Tsafrir. 2021. Characteriz-
ing, Exploiting, and Detecting DMA Code Injection Vulnerabili-
ties in the Presence of an IOMMU. In Sixteenth European Con-
ference on Computer Systems (EuroSys ’21), April 26–29, 2021,
Online, United Kingdom. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3447786.3456249

1 Introduction
Direct Memory Access (DMA) is a technology that allows
input-output (I/O) devices to access memory without CPU
involvement, thereby improving system performance. DMA-
capable devices include internal devices, such as GPUs, Net-
work Interface Cards (NICs), storage devices (e.g., NVMe),
and other peripheral devices, including external devices such
as FireWire and Thunderbolt.1 However, in its basic form,
DMA makes the system vulnerable to DMA attacks. These
are cases where malicious DMA-capable devices, such as
compromised firmware [7, 25], access sensitive memory re-
gions not intended for their use.

Numerous DMA exploits are known [6, 21, 45], ranging
from stealing and manipulating sensitive data to taking over
the victim machine. Widespread attacks include: opening a
locked computer [42, 64], executing arbitrary code on the
victim machine [5, 24, 45, 67], stealing sensitive data items
such as passwords [9, 13, 40, 63], and extracting a full mem-
ory dump of a victim machine [26, 42, 64, 65]. These threats
are supposed to be mitigated by the Input-Output Memory
Management Unit (IOMMU), which adds a layer of virtual
memory to devices. The IOMMU brokers all I/O requests,
translating their target I/O virtual addresses (IOVA) to physi-
cal addresses. In the process, the IOMMU provides address
space isolation, allowing a device to access only permitted
pages and rendering all other memory inaccessible.

Unlike processes that operate at page granularity, I/O buffers
can be significantly smaller than a page. I/O buffers and other
kernel buffers can co-reside on the same physical pages, in-
advertently exposing these kernel buffers to the device. For
this reason, known as the sub-page vulnerability [45, 47], the
IOMMU cannot fully protect the kernel from unprivileged
access. Consequently, sub-page vulnerabilities were the basis
1Currently, the Linux kernel (version 5.0) has as many as 700 such device
drivers, of which one third are network device drivers.

395

https://doi.org/10.1145/3447786.3456249
https://doi.org/10.1145/3447786.3456249
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Markuze, Vargaftik, Kupfer, Pismeny, Amit, Morrison, and Tsafrir

for several recent DMA exploits [7, 8, 38, 45]. Neverthe-
less, these previously reported vulnerabilities have an ad-hoc
nature rather than a structured top-down approach.

Accordingly, we conducted a systematic study of sub-page
vulnerabilities. To provide insight into the structure of DMA
vulnerabilities, we first break down sub-page vulnerabilities
into four types (Section 3.2):

• Exposed driver metadata
• Exposed OS metadata
• Mapped by multiple IOVA due to multiple co-located

buffers
• Randomly co-located

Next, we identify the ingredients that make it possible for
a malicious device to exploit these four types of sub-page
vulnerabilities and execute a viable DMA attack. Focusing
on code injection attacks, we introduce (Section 3.3) a set of
three vulnerability attributes that can be used to execute such
attacks:

• A kernel virtual address (KVA) of a buffer filled with
malicious executable code (i.e., malicious buffer).

• Write access to a function callback pointer, exposed in a
data structure via one of the four sub-page vulnerability
types.

• Existence of a time window such that the device can
modify the callback pointer during that time window;
the CPU will subsequently jump to the pointed code
before the pointer gets overwritten, if it is ever over-
written.

With the characterization of the different sub-page vulnera-
bilities and the vulnerability attributes, we were able to build
analysis tools that can detect potentially hazardous sub-page
vulnerabilities:

• We built a static code analysis tool that performs a Sub-
Page Analysis for DMA Exposure (SPADE). SPADE
scans for potentially exposed callback pointers on DMA-
mapped pages. We used SPADE on Linux kernel 5.0
and found that as many as 72% of device drivers are
potentially vulnerable to code injection attacks (Sec-
tion 4.1).

• Some sub-page vulnerabilities can only manifest dy-
namically at run-time, potentially exposing callback
pointers and/or kernel addresses. Static analysis may
not reveal vulnerabilities where a memory buffer is ex-
posed randomly. For example, a random exposure can
occur when a memory buffer is co-located on the same
page as a mapped I/O buffer. Accordingly, we devel-
oped a run-time analysis tool that reports such vulnera-
bilities and demonstrate its use. Termed DMA-Kernel-
Address-SANitizer (D-KASAN), this tool reports all
cases where a kernel buffer is exposed, inadvertently or
otherwise (Section 4.2).

We use our tools to find and demonstrate attacks on the
Linux kernel. We focus on compound attacks, cases where
a detected sub-page vulnerability alone is insufficient to ex-
ecute a code injection attack since at least one of the three
vulnerability attributes is initially missing, but can be attained
via compound steps.

We observe that unlike compound attacks, previous work
has explored single-step attacks, i.e., attacks in which the
three vulnerability attributes are trivially provided. Namely, a
mapped I/O buffer resides on a mapped page which, due to
sub-page vulnerability, also exposes a callback pointer and
a kernel virtual address, and the timing is such that the CPU
will not overwrite the modifications.

Analysis of such single-step attacks, that can typically be
blocked with localized fixes, may lead to a dangerous mis-
conception. In particular, one may assume that buggy device
drivers or poor but isolated design choices are to blame for
DMA vulnerabilities [43, 44]. However, by introducing com-
pound attacks, we demonstrate that it is often the kernel itself
that supplements the missing pieces, showing that this is a
deep-rooted issue rather than a collection of disjoint incidents.
We identify multiple kernel APIs and data structure designs
that facilitate the acquisition of the vulnerability attributes by
a malicious device.

To summarize, we make the following contributions:

• Provide a categorization of the four sub-page vulnera-
bility types.

• Introduce a set of three vulnerability attributes that are
sufficient to execute code injection attacks.

• Develop a static code analysis tool (SPADE) to flag
code paths that may expose callback pointers.

• Develop a run-time tool (D-KASAN) to identify sub-
page vulnerabilities at run-time, including vulnerabili-
ties caused by random exposure.

• Demonstrate novel DMA attacks on the Linux kernel,
termed compound attacks.

• Make our tools publicly available [46, 48].

2 Background
In this section, we provide background on DMA-related at-
tacks. First, we describe classic DMA attacks and the IOMMU
protection against them. Then, we discuss well-established
protection practices to prevent privilege escalation (i.e., code
injection) attacks and methods for their circumvention.

2.1 DMA Attacks
DMA allows I/O devices direct access to memory [57] with-
out CPU involvement. While DMA is essential for fast I/O,
it also provides ample opportunity for unmonitored and ma-
licious activity by DMA-capable devices, resulting in DMA
attacks.

An attacker can access sensitive data, overwrite the OS
code and data structures, and even gain full control of the

396

Characterizing, Exploiting, and Detecting DMA Code Injection Vulnerabilities EuroSys ’21, April 26–29, 2021, Online, United Kingdom

Start Addr Offset End Addr Size VM are description
ffff888000000000 -119.5 TB ffffc87fffffffff 64 TB direct map of phys memory (page_offset_base)
ffffc90000000000 -55 TB ffffe8ffffffffff 32 TB vmalloc/ioremap space (vmalloc_base)
ffffea0000000000 -22 TB ffffeaffffffffff 1 TB virtual memory map (vmemmap_base)
ffffec0000000000 -20 TB fffffbffffffffff 16 TB KASAN shadow memory
ffffffff80000000 -2 GB ffffffff9fffffff 512 MB kernel text mapping (physical address 0)
ffffffffa0000000 -1536 MB fffffffffeffffff 1520 MB module mapping space

Table 1. Linux kernel memory layout

victim system. DMA attacks can be carried out using an
external or internal DMA-capable device.

Accessible expansion ports, e.g., FireWire or Thunderbolt,
allow external devices to initiate DMA transactions merely
by connecting a programmable accessory [21, 42, 45, 65].
Exploiting internal devices is more challenging, but enables
persistent and stealthy attacks.

Many options are available to gain control of an internal de-
vice. For example, a resourceful attacker can exploit firmware
bugs [63]. These can be well-known exploits, since end-users
are often slow in deploying firmware updates [22]; they may
even be newly discovered zero-day vulnerabilities [8]. Alter-
natively, certain attackers may be able to replace the device
firmware altogether with a malicious one [55, 71]. It is also
possible to manufacture devices that appear to be legitimate
but are, in fact, malicious at the circuitry level [69].

Once an attacker gains control over a DMA device con-
nected to a victim machine, various attacks are possible.
These attacks can range from keyloggers [40, 63] to full
control over commodity OS and hypervisor, including Win-
dows [5, 45], Linux, OSX [24, 45], Android [8], and Xen [67].

Several software tools exist for perpetrating DMA attacks,
with some of them being open source. Tools such as Volatil-
ity [65], Inception [42], GoldFish [26], and FinFireWire [64]
can extract target machine memory and unlock victim ma-
chines by patching the OS code. These tools are reportedly
used by government agencies, such as the NSA.

2.2 IOMMU
With the lack of software protection against DMA attacks,
the common practice is to restrict DMA accesses through
hardware protection. The most common mechanism for this
purpose is the I/O memory management unit (IOMMU). The
IOMMU adds a level of indirection for DMA addresses [54,
63, 66, 70], effectively providing peripheral devices with I/O
virtual addresses (IOVA). This way, the device can access only
those pages explicitly allowed by the OS. Inspired by the x86
MMU, the IOMMU uses a page table for address translation
and an IOTLB for caching recent accesses. The page tables
are managed by the OS, and as with the MMU, have a page
granularity. The common page size is 4 KB, although there
exist larger page sizes, up to GBs.

The IOMMU page table also holds page access rights for
each IOVA. An access right can be either READ, WRITE, or
BIDIRECTIONAL. Note that WRITE access does not grant
a DMA device READ access, whereas BIDIRECTIONAL
access is needed to both read and write from/to the page.
It is also important to note that a single physical page can
be mapped by multiple IOVAs, each with possibly different
access rights.

IOMMUs were not designed primarily to provide secu-
rity [19]. Instead, IOMMUs were used to allow devices that
did not support vectored I/O, to access contiguous virtual
memory that may map non-contiguous physical memory [12,
68]. IOMMUs also enabled legacy devices that only sup-
ported a limited address width (32-bit) to access high memory
(64-bit). More recently, IOMMUs were used to assign I/O
devices directly to virtual machines, while maintaining their
isolation properties [1, 32].

2.3 DMA API
Device drivers must use the DMA API to manage the DMA
buffers. Drivers dma_map a buffer before initiating a DMA
to that buffer, thereby passing ownership of the buffer to the
device. Drivers dma_unmap the buffer upon DMA comple-
tion, thereby regaining ownership of the buffer. The dma_map
call returns an IOVA. The driver must configure the device
to DMA for that specific IOVA; dma_unmap later takes this
IOVA as its parameter. There are analogous methods to map
and unmap for non-contiguous scatter/gather lists.

2.4 OS Defenses
Other than DMA attacks, OS developers have to worry about
code injection originating from unprivileged users, such as
buffer overflow attacks [23, 35]. We discuss the common
mechanisms used to mitigate such attacks in the kernel. Sub-
verting these countermeasures is essential to executing a suc-
cessful DMA attack.

NX-BIT. A malicious device can gain write access to a
function pointer and consequently gain the ability to inject
malicious code. To protect against such threats, modern OSs
make use of hardware support, namely the No-eXecute bit, to
prevent code execution from data pages. This bit is defined for
each page in the MMU’s page tables. Whenever the CPU tries
to fetch code from memory, this bit is validated. When set, the

397

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Markuze, Vargaftik, Kupfer, Pismeny, Amit, Morrison, and Tsafrir

CPU raises an exception to the OS instead of executing the
code. The NX-bit method is also known as the W ⊕ X (Write
⊕ eXecute) or DEP (Data Execution Prevention). A DMA-
capable device rarely has access to kernel text regions. Thus,
the NX-bit is effective in preventing simple code injection
attacks.

Subverting NX-BIT. Return Oriented Programming (ROP)
is a common method used by malware to bypass DEP (i.e.,
NX-bit) defenses [60]. ROP exploits the fact that the CPU
stack pointer may point to any data page. To set up an attack
from a data page, the attacker builds a poisoned stack filled
with required data and pointers to specific locations in the
code section (a.k.a., ROP gadgets). Each gadget is a short
piece of code, usually one or two instructions, and a return
instruction. When the CPU executes a return instruction, the
return address and thus the address of the next instruction to
execute is taken from the stack. In the poisoned stack, each
return address points to the next gadget, and so on.

By carefully selecting these gadgets, an attacker can exe-
cute any payload. To bootstrap a ROP attack, an attacker must
modify the stack pointer register to the address of the poi-
soned stack. This is often achieved with another DEP circum-
venting technique, known as Jump Oriented Programming
(JOP) [10]. JOP uses, jump instructions instead of return
instructions and, thus, does not require a poisoned stack.

KASLR. Address Space Layout Randomization (ASLR) is
a common mechanism for mitigating code injection attacks
in the context of user-level processes. Systems that support
ASLR, randomize the memory layout for each process on
every execution. This way, ROP attacks built for a specific
layout fail. Similar to ASLR, KASLR [23] randomizes the
kernel memory layout.

Specifically, the Linux kernel has predetermined ranges
for its virtual memory layout [36]. This layout defines the
location of the kernel text mapping, and the direct mapping
of physical memory and the virtual memory, as depicted in
Table 1. At each boot, KASLR randomizes the offset of these
segments in the corresponding range.

Subverting KASLR. To successfully execute a code in-
jection attack, the attacker must know the memory layout.
Specifically, the address of the code section is required for
finding ROP gadgets (Section 2.4). Since KASLR random-
izes only the base address of the kernel text mapping, text
addresses always appear in the kernel text mapping range
(Figure 1) and are therefore easy to detect. KASLR kernel
text is aligned to 2 MB borders. This is the result of page
table restrictions and is unlikely to change. This means that
the lowest 21 bits are not modified by the KASLR random-
ization procedure. Hence, knowing even a single address of a
known element is sufficient to deduce the base address and
compromise KASLR. Once the base address is known, the
attacker can use it to create a ROP stack.

To identify this first pointer, malicious devices can scan
the pages mapped for reading, looking for kernel pointers
leaked due to sub-page vulnerability. Once such a pointer is
identified, all that remains is to infer the offset of the symbol
in the binary from the pointer to get the base address.

In fact, during our investigation, we found that there is
a symbol visible to both FireWire and NICs in Linux 5.0,
that compromises KASLR. Specifically, as of version 2.6.24,
Linux supports network namespaces and every network ob-
ject, especially sockets, have a pointer to their namespace
object. One such global namespace object, init_net, is
always defined. By scanning leaked pages during I/O and uti-
lizing the fact that the lower 21 bits of the text region are never
modified, we can identify init_net with a high probabil-
ity. The direct mapping base (page_offset_base) and
virtual memory map (vmemmap_base) are also randomized
(Figure 1), where each region’s base pointer is randomized
with respect to a 1 GB alignment. This means the lower
30 bits are unmodified and can leak both the Page Frame
Number (PFN) and the randomized offset. This alignment
is also due to page table considerations. That is, the page
upper table (PUD) has a 30-bit shift. Once the random offsets
PAGE_OFFSET and vmemmap for direct mapping base and
virtual memory map are known, it becomes possible to trans-
late between a KVA (kernel virtual addresses within the direct
mapping region), its PFN, and its struct page address
(virtual memory map region).

3 Categorizing DMA Risks
This section organizes and categorizes the risks associated
with DMA operations, providing the building blocks for rea-
soning about code injection attacks. We first present our threat
model and then organize the different sub-page vulnerabilities
into four categories. Finally, we identify a set of three vulner-
ability attributes that make it possible for a malicious device
to exploit a sub-page vulnerability and execute a viable code
injection attack.

3.1 Threat Model
By organizing the DMA risks, we reveal that the Linux kernel
is vulnerable to various high impact attacks. For example, a
full memory dump is possible when an attacker can modify
data pointers before they are mapped, causing the driver to
map arbitrary kernel addresses. Alternatively, a malicious
device can corrupt random memory regions [47], resulting in
a denial of service attack (DOS).

The most significant potential consequence of these attacks
is privilege escalation via code injection, allowing attackers
to execute arbitrary code with kernel privileges. Indeed, this
is the focus of our paper. Our attacks are designed with the
following assumptions:

1. A malicious DMA-capable device is attached to the
system.

398

Characterizing, Exploiting, and Detecting DMA Code Injection Vulnerabilities EuroSys ’21, April 26–29, 2021, Online, United Kingdom

2. The actual attack is performed solely by the DMA-
capable malicious device.

3. Any hardware aside from the specific malicious device
is working as expected.

3.2 Sub-Page Vulnerabilities
Anytime an I/O buffer smaller than a page is DMA-mapped,
all additional information that resides on the same physical
page becomes accessible to the device. Any such situation
where a memory-region is exposed due to the IOMMU page
granularity is called a sub-page vulnerability.

We classify the different types of sub-page vulnerabilities
into four categories, as illustrated in Figure 1:

(a) The I/O buffer is part of a bigger data structure. This
data structure may include function pointers, often
caused by poor DMA hygiene in the driver. An isolated
driver fix is usually sufficient to repair such vulnerabili-
ties.

(b) The OS (e.g., memory allocator)—rather than the driver—
saves metadata such as free-lists, on the same page as
the I/O buffer [15]. Manipulating these data structures
may also compromise the system [4]. Similar to (a),
sensitive metadata is unwittingly shared. However, in
this case, it is an OS subsystem that is at fault rather
than the device driver.

(c) The same page is mapped multiple times due to co-
located device driver buffers, resulting in multiple IO-
VAs indicating the same page. In this case, unmapping
one IOVA will not prevent the device from accessing
the page through a different IOVA. The device will re-
tain access to the physical page as long as a single valid
IOVA exists. This means that the device can tamper
with memory regions that should no longer be accessi-
ble. We discuss the practical implications of multiple
IOVAs indicating the same page in Section 5.2.

(d) The I/O buffer and a different, dynamically allocated
memory buffer may coincidentally share a page. This
common situation results in data leakage (e.g., kernel
pointers). Currently, the Linux kernel uses the same
memory allocation mechanism (e.g., kmalloc) for both
I/O buffers and regular kernel buffers. Consequently,
I/O buffers often share pages with other, potentially
sensitive, kernel buffers. Since IOMMU works at page
granularity, the respective I/O devices gain access to
these kernel buffers. Such vulnerability is a subclass
of (b), as it is caused by an OS subsystem; the main
difference is that the exposed data structures are leaked
randomly.

3.3 Vulnerability Attributes for Code Injection
We introduce a schema that allows for a systematic analysis
of code injection attacks by DMA-capable devices. For a
successful privilege escalation attack (i.e., code injection), a

Read IOVA A

Driver
Metadata

OS
Metadata

I/O buffer Incidental

I/O buffer I/O buffer

I/O buffer

Read KVA

I/O device

I/O buffer

Unintended access

Mapped by different IOVA

Mapped by IOVA A

(a) (b) (c) (d)

IOMMU

4K
B

Pa
ge

Figure 1. DMA sub-page vulnerabilities when the I/O buffer
shares a page with other data: (a) I/O buffer metadata; (b) OS
metadata; (c) a page mapped by multiple IOVA; (d) randomly
co-located sensitive buffers.

malicious device needs the following set of three vulnerability
attributes:

1. The KVA of a kernel buffer filled with malicious code
(e.g., ROP attack). Given that the device is using an
IOVA, the attacker needs to obtain the buffer’s KVA,
for example, by observing leaked pointers.

2. Write access to a function callback pointer, which can
alter the CPU control flow and cause it to execute the
malicious code. For example, this might be write access
to a data structure that holds a function callback pointer
at a known offset.2 The location on the page of the
callback pointer must be known to the device.

3. A time window exists such that the device can mod-
ify the callback pointer during that window and the
CPU will subsequently jump to the pointed code; this
occurs before the pointer gets overwritten, if it is ever
overwritten.

To further emphasize the significance of these attributes,
we present a hypothetical scenario. Assume a NIC has write
access to a page containing a received (RX) packet. Due to a
sub-page vulnerability and a random allocation coincidence
(Figure 1, type (d)), a structure with a callback pointer is
write-accessible to a malicious device. Also, the device can
create a valid malicious buffer in the aforementioned page.
It may seem that the device has a valid attack, whereas it
actually lacks the following:

• Without a valid KVA of the writable page, the device
cannot modify the callback function pointer to indicate
the malicious buffer.

• Although a callback function pointer is available for
modifications, the device has no way of knowing that a

2The Linux kernel randomizes the layout of some data structures with __ran-
domize_layout annotation [56].

399

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Markuze, Vargaftik, Kupfer, Pismeny, Amit, Morrison, and Tsafrir

callback function pointer is available for sabotage nor
the correct offset of the callback function pointer.

• It is not known whether the modified callback pointer
will be executed.

Under the hypothesized circumstance, and without addi-
tional information, a malicious device has no viable attack
options. All three attributes are required for a code injection
attack. While corrupting the random kernel memory is still
a possibility and may even cause a kernel panic [47], it does
not achieve the goal of privilege escalation.

4 Detecting Sub-Page Vulnerabilities
We now present the tools we developed to identify the sub-
page vulnerabilities described in the previous section.

4.1 Sub-Page Analysis for DMA Exposure
We devised a static code analysis tool that performs Sub-
Page Analysis for DMA Exposure (SPADE). With well over
1000 dma_map* function calls (i.e., the set of functions
implementing the DMA API) in the Linux kernel, a manual
process would be arduous. SPADE performs the following
operations to detect the different sub-page vulnerability types
(Figure 1) where a callback pointer may be exposed:

1. Type A: Looks for dma_map* functions and traces
back the call stack to identify whether the mapped
buffer is embedded inside a data structure.

2. Type B: Looks for kernel APIs that create a data struc-
ture inside a mapped buffer (e.g., build_skb).

3. Type C: Looks for functions that are used for fast allo-
cation by slicing a contiguous memory buffer into seg-
ments (e.g., netdev_alloc_skb, napi_alloc_skb). These
may result in multiple IOVA mapping the same page.
These functions utilize the page_frag API, which
we discuss in greater detail in Section 5.1.

4.1.1 High-Level Design Overview. SPADE operates re-
cursively starting from calls to the dma_map* functions. From
this initial set of calls, SPADE identifies the mapped variables
and backtracks their declarations and assignments. When a
data structure is identified as exposed, SPADE identifies the
exposed callback pointers or mapped heap pointers.

SPADE is implemented in approximately 2000 lines of
Perl 5 code. It uses pahole [17] to explore the compiled
binaries for the layout of the exposed data structures. Pahole
is a tool that uses the DWARF [28] standardized debugging
data format to examine data structure layout. To navigate the
kernel code, SPADE uses Cscope [37, 39] which is an open
source tool for browsing C source code.

SPADE is applicable to any kernel code written in C. We
intend to make the SPADE publicly available for the benefit
of the research community.

4.1.2 Output. For each DMA-mapping call, SPADE out-
puts the line numbers of relevant declarations, function calls,

and assignments, allowing human experts to trace back and
validate the vulnerability. Figure 2 presents an example of
output for a vulnerability found in the NVMe host driver.

The output starts from the impact evaluation, such as de-
tected exposed callback pointers, and continues with pertinent
code lines. Line 7 reveals that a single callback pointer is
mapped in the mapped nvme_fc_fcp_op data structure
(i.e., fcp_req.done) and line 8 reveals that it is possible
to spoof another 931 callback pointers.3 After finding the vari-
able declaration in line 5, and looking at the mapped pointer
&op->rsp_iu in line 4, SPADE concludes in line 6 that
the entire struct nvme_fc_fcp_op is exposed to the
device. Lines 1 through 3 repeat the same analysis process for
the dma_map_single call that exposes the data structure
to the device.

This example demonstrates the recursive nature of the anal-
ysis. SPADE first identifies the suspect function call, finds the
mapped pointer’s declaration, and then prints its type. This
pattern repeats itself in lines 1 through 3 and 4 through 6 until
a vulnerability is discovered. The findings are then displayed:
line 7 counts the number of directly exposed callback point-
ers, and line 8 displays the number of callback pointers that
may be potentially spoofed.

4.1.3 Analysis and Results. We used SPADE over Linux
kernel 5.0 code, analyzing 1019 dma_map_single calls over
447 files. We present the results in Table 2. We found 156
cases in which device drivers expose callback pointers. Of
these, 54 are cases in which the pointers are exposed di-
rectly, and the rest are cases in which callback pointers can
be spoofed. We found that 13% (line 1 in Fig. 2) of the
drivers expose data structures via type (a) vulnerabilities,
whereas 60% (lines 2,7 in Fig. 2) expose data structures
via type (b) vulnerabilities. Namely, 13% are vulnerable
due to driver bugs and 60% of drivers are vulnerable due
to OS design choices. In the case of the Linux kernel, the
most common source of vulnerability caused by the OS de-
sign is struct skb_shared_info, which is used ubiqui-
tously in Linux networking. This data structure is always
located on the same page as the skb->data, and it also
contains a callback pointer. We discuss the vulnerabilities
related to skb_shared_info in Section 5. We found that
more than 50% of the dma-map calls either directly map the
skb->data or use the build_skb API (lines 2 and 7 in
Table 2), which exposes skb_shared_info. The OS pro-
vides this data structure layout and API rather than it being an
isolated driver bug. Additionally, we found 19 data structures
that are exposed via APIs that store private data structures
on the same page as vulnerable metadata, e.g., netdev_priv,
aead_request_ctx, and scsi_cmd_priv.

In addition to type (a) and (b) vulnerabilities, SPADE also
flagged 344 cases where a type (c) vulnerability is present.

3In this case, spoofing means replacing this pointer to indicate an instance of
the structure created by the device, with its own callback pointers.

400

Characterizing, Exploiting, and Detecting DMA Code Injection Vulnerabilities EuroSys ’21, April 26–29, 2021, Online, United Kingdom

[8]/*** Spoofed Vulnerability:*/ 931 Callbacks reachable via struct nvme_fc_fcp_op : DMA_FROM_DEVICE
[7]/*** Direct Vulnerability: */ 1 Callback exposed in struct nvme_fc_fcp_op : DMA_FROM_DEVICE
[6]/*mapped type:*/ struct nvme_fc_fcp_op
[5]/*DECLARATION*/["__nvme_fc_init_request:1698"]:__nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,

struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op, ...)
[4]/*CALL*/["__nvme_fc_init_request:1731"]: fc_dma_map_single(ctrl->lport->dev, &op->rsp_iu,

sizeof(op->rsp_iu), DMA_FROM_DEVICE);
[3]/*mapped type:*/ void
[2]/*DECLARATION*/["fc_dma_map_single:935"]:fc_dma_map_single(struct device *dev, void *ptr, ...) {
[1]/*CALL*/["fc_dma_map_single:939"]: return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;

Figure 2. SPADE output example showing a path in the nvme_fc driver where a callback pointer is exposed with write access.

Stat #API calls #Files
1. Callbacks exposed 156 (15.3%) 57 (12.8%)
2. skb_shared_info mapped 464 (45.5%) 232 (51.9%)
3. Callbacks exposed directly 54 28
4. Private data mapped 19 7
5. Stack mapped 3 3
6. Type C vulnerability 344 227
7. build_skb used 46 40
Total dma-map calls 1019 447

Table 2. SPADE results summary

Our analysis found three instances where the stack pointer
is mapped, potentially simplifying the execution of a ROP
attack.

In total, we found 742 dma-map calls (i.e., 72.8% of all
dma-map calls) with a potential vulnerability, of which 344
also admit a type (c) vulnerability.

Our code for SPADE is publicly available [46].

4.2 DMA Kernel Address SANitizer
In Section 4.1, we demonstrated that more than 70% of DMA-
map operations result in exposed pointers. Most of the remain-
ing 30% of DMA-map operations are executed on allocated
objects that are presumably not co-located on the same page
with vulnerable metadata. However, this is often not the case
in practice. Indeed, objects allocated via the kmalloc API [15]
may share a page with objects of similar size. As a result, vul-
nerable metadata may still be mapped. Such a vulnerability is
not visible to SPADE as it is of a dynamic nature. Accordingly,
we developed a run-time tool that reports such vulnerabilities.

Our solution is based on an existing kernel tool, KASAN [20],
which is a dynamic memory error detector designed to detect
out-of-bounds and use-after-free bugs. KASAN uses shadow
memory to record whether a memory byte is safe to access.
It also uses compile-time instrumentation to insert checks
of shadow memory on each memory access. We modified
KASAN to record DMA-map operations in addition to mem-
ory allocations. Our tool, referred to as DMA-KASAN (D-
KASAN), reports the following:

1. alloc-after-map: kmalloc object is allocated from a
mapped page.

2. map-after-alloc: the containing page is mapped after an
object was allocated.

[1] s i z e 512 [READ, WRITE] _ _ a l l o c _ s k b +0 xe0 / 0 x3f0
[2] s i z e 512 [WRITE] l o a d _ e l f _ p h d r s +0 xbf / 0 x130
[3] s i z e 512 [WRITE] _ _ d o _ e x e c v e _ f i l e . i s r a .0+0 x287 / 0 x1080
[4] s i z e 64 [WRITE] s o c k _ a l l o c _ i n o d e +0 x4f / 0 x120
[5] s i z e 328 [READ, WRITE] a s s o c _ a r r a y _ i n s e r t +0 xa9 / 0 x7e0

Figure 3. D-KASAN report example

3. access-after-map: the CPU accesses a DMA mapped
page.

4. multiple-map: an object is mapped multiple times with
possibly different permissions.

We tested D-KASAN using the setup described in Section 6).
In our experiment we cloned a large project from a Git repos-
itory and compiled it concurrently with light network traffic
(i.e., ICMP ping). This experiment identified numerous cases
where a DMA-mapped page is used to hold network and file
system metadata. Sample results are shown in Figure 3. Each
line shows an allocation that results in a random exposure;
namely, it shows the size of the allocated buffer, the DMA
access type, and the allocating location (i.e., function name
and offset).

Figure 3 also shows how random kernel data structures can
be mapped for both READ and WRITE. Some of these, such
as line 5, also contain callback pointers.

While we do not demonstrate random exposure exploits,
these findings indicate that random exposure vulnerabilities
should not be disregarded. Accordingly, in Section 5.5, we
present a compound attack that exploits an I/O buffer that is
mapped twice, once for read and once for write. Line 1 in
Figure 3 shows how such double mapping innocently occurs.

4.3 Discussion and Limitations
D-KASAN is a run-time tool that has a large memory foot-
print and the obvious overhead of callbacks on each memory
access. This tool is useful for testing specific systems for
vulnerabilities. SPADE is a static analysis tool that may fail
to follow a mapped variable due to complex code constructs
such as function pointers, macros, and others, potentially re-
sulting in a false-negative result. False positives may happen
in the rare situation where the mapped data structure crosses
a page boundary. In this case, SPADE may flag a callback

401

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Markuze, Vargaftik, Kupfer, Pismeny, Amit, Morrison, and Tsafrir

Leaked

Bytes…

unsigned char *data;

void (*callback)(struct ubuf_info *,…);
…

Malicous Code
…

void * destructor_arg;

skb_frag_t frags[MAX_SKB_FRAGS];

(a) struct sk_buff
…

…

(d)

4
KB

 p
ag

e
�

(c)struct ubuf_info

(b) struct
skb_shared_info

Figure 4. Using skb_shared_info to execute arbitrary
code in a kernel context.

function that may not be exposed, since it resides on a dif-
ferent page. Only part of a data structure is accessible to the
device due to the sub-page vulnerability at the mapped page,
whereas the callback pointer resides on a different page that
is not accessible to the device.

Our code for D-KASAN is publicly available [48].

5 Compound DMA Attacks
This section explores new attacks on the Linux network stack,
where the vulnerability attributes are initially missing but
are attainable via compound steps. We focus on the Linux
network stack, which initially appears secure [45]. Neverthe-
less, as we demonstrate, the Linux network stack is actually
responsible for 60% of the DMA vulnerabilities we found.

Recall that, once we have discovered a sub-page vulnera-
bility, our goal is to obtain the three vulnerability attributes
described in Section 3.3: (1) a KVA, (2) a callback pointer and,
(3) timing. Accordingly, in Section 5.1, we first describe how
to obtain (2) a callback function pointer. Then, in Section 5.2,
we show that (3) a time window for exploiting this pointer is
available. While these two steps for obtaining vulnerability
attributes (2) and (3) are generic, there are different recipes
for how to obtain the remaining vulnerability attribute (1),
i.e., the KVA of the malicious buffer. We complete the vulner-
ability attributes in Section 5.3, Section 5.4, and Section 5.5,
by showing different ways to obtain (1) the KVA.

5.1 Obtaining a Callback Pointer
Struct sk_buff is a data structure used by the Linux net-
work stack to hold information representing a network packet.
Struct sk_buff holds the metadata of a network packet
(e.g., packet size, associated socket). One of these fields is a
pointer to a data buffer. The data is allocated separately, and
thus, does not share a page with its sk_buff, as shown in
Figure 4.

This separation means that sk_buff is never intentionally
mapped to the device. Indeed, it is a common belief (e.g.,
Markettos et al. [45]) that the Linux network stack is not

susceptible to DMA attacks via the data pointer. In this
work, we show that this belief is misplaced.

The Linux network stack supports packet cloning by merely
copying sk_buffmetadata. That is, the resulting sk_buff
and the original one share the data buffer [16]. The pay-
load in the sk_buff can be partially located on the linear
part (i.e., in the buffer indicated by the data pointer) and
partially on the non-linear fragments; that is, buffers that are
described by their struct page, length, and offset in the
frags array of skb_shared_info (Figure 4).

To support the sharing of these non-linear buffers, the
embedded skb_shared_info metadata structure is used.
Struct skb_shared_info, in contrast to sk_buff, is al-
ways allocated as part of the data buffer. Therefore it is always
mapped to the device. skb_shared_info is unwittingly
mapped with the permissions of the packet, i.e., WRITE for
RX packets, READ for TX packets, and in some cases, such
as XDP [53] with BIDIRECTIONAL.

Consequentially, skb_shared_info holds the poten-
tial callback pointer that the malicious device can exploit.4

The sub-page vulnerability created by skb_shared_info
represents a type (b) vulnerability (Figure 1 (b)): this is innate
to Linux networking, as opposed to a driver security bug.

Figure 4 depicts how a malicious device can mount an
attack using skb_shared_info in four steps:

(a) An RX sk_buff and its data buffer are allocated. The
data buffer is mapped for the NIC with WRITE access
to the whole 4 KB page.

(b) The NIC overwrites the destructor_arg field in
skb_shared_info to point within the mapped page.
As a result, the destructor_arg points to a struct
ubuf_info that is created by the NIC.

(c) ubuf_info has a callback pointer that is now point-
ing to the malicious code residing on the same page. In
the case of NX-bit, it is a poisoned ROP/JOP[10] stack
(Section 2.4).

(d) When the sk_buff is released, the callback is in-
voked.

To expand this scenario into a complete attack, the attacker
must obtain all three vulnerability attributes. Namely, the at-
tacker needs the actual KVA of the malicious buffer and the
NIC must have a timely window for WRITE access to the
page. Next, we demonstrate how an attacker can leverage stan-
dard OS behavior to obtain both missing vulnerability attributes.

5.2 Existence of a Time Window
To reason about the existence of an appropriate time window
for altering the callback pointer, we first discuss the Linux de-
fault mode for IOTLB invalidation, which is a known security
vulnerability [47, 49]. In Section 5.2.1, we present the issue of

4In Fig. 4 the destructor_arg, which holds a callback pointer, is used
for socket buffer accounting and facilitates custom handling when the buffer
is freed.

402

Characterizing, Exploiting, and Detecting DMA Code Injection Vulnerabilities EuroSys ’21, April 26–29, 2021, Online, United Kingdom

VA

(b) Old Offset(a) New Offset (old offset - B)

B bytes

Available memory

Figure 5. Allocation of B bytes from page_frag

deferred invalidation. Then, in Section 5.2.2, we discuss the
multiple means by which an attacker can gain timely access
to skb_shared_info.

5.2.1 Deferred Invalidation Vulnerability. The IOTLB is
analogous to the MMU TLB. The IOMMU does not maintain
consistency between the IOTLB and the IOMMU page tables.
As a result, the OS has to explicitly invalidate the IOTLB
to maintain consistency when a translation entry is removed.
To ensure that the IOTLB never holds stale entries, the OS
must invalidate the IOTLB entry immediately after removing
a DMA mapping.

This scheme, called strict mode in Linux, can degrade
performance due to the overhead of IOTLB invalidations
following each I/O operation [47, 49, 59]. In I/O intensive
workloads, the combined cost of IOTLB invalidations can be
prohibitively high. The overhead of each IOTLB invalidation
can be as high as 2000 cycles [2]. This overhead is consider-
ably higher than a TLB invalidation, which takes roughly 100
cycles [29].

To reduce this overhead, Linux uses deferred mode as a
default. Linux defers specific IOTLB invalidations and instead
performs periodic global IOTLB invalidations. While this
deferred mode improves I/O performance, it also breaks the
guarantee that after unmapping (e.g., dma_unmap_page),
the physical page should no longer be accessible by the device.
This deferred time frame, shown in Figure 6), may be as high
as 10 milliseconds [49].

The repercussions of deferred mode are that a malicious
device can take advantage of this time window, where it
has access to memory pages unbeknownst to the CPU. The
deferred mode opens up two distinct attack options:

1. A device can alter data structures that the CPU has mod-
ified after unmapping (e.g., calling dma_unmap_page).
IOVA mappings, as a rule, are short-lived as they are
meant be used only for the duration of the I/O, usually
for a few microseconds. The additional milliseconds
provide the attacker with a time window wide enough
to conduct its attack.

2. The page can be freed and then immediately reused by
the OS. Fast reuse is a common scenario since Linux
reuses hot pages (i.e., recently used pages) as they are
likely to reside in the CPU caches [14]. However, this
also leaves the kernel open to additional random expo-
sure attacks.

strict

deferred

map unmap

inaccessible
legitimate access
access via IOTLB

Invalidate

time

Figure 6. Strict vs. deferred IOTLB invalidation. In deferred
mode, there is a time window in which the data is accessible
to the device, but the mapping no longer appears in the page
table.

Device driver

create; unmap unmap; create

driver bug

Callback access

deferred mode

OS design

strict mode

type (c) sub page
vulnerability

OS design

(i)

(ii)

(iii)

Figure 7. Different ways in which the callback pointer in
skb_shared_info can be successfully exploited.

5.2.2 Time Window. When a packet arrives on a receive
path, an skb_shared_info struct is initialized after the
packet is received i.e., after the DMA operation was com-
pleted and the DMA access is potentially revoked. In such a
case, correct use of the DMA API should thwart the attack
outlined in Section 5.1 (Figure 4). First unmapping the buffer
and only then initializing the skb_shared_info should
allow the CPU to undo any malicious changes made by the
NIC. But, as we next demonstrate, DMA access is often easily
achieved even after the CPU has made its changes.

We now describe how the time window is attainable via
three different paths, as illustrated in Figure 7:

(i) Apparently, prevalent device drivers (e.g., Intel 40GbE
driver, i40e) first create an sk_buff and only then unmap
the buffer. This order of execution allows the device to undo
legitimate changes to skb_shared_info by the CPU.
(ii) Even when the order is correct and the unmapping of the
buffer occurs before the creation of the sk_buff, skb_shared_info
is still not secure from later modifications. Because the default
IOMMU mode in Linux is deferred protection (Section 5.2.1),
the unmap order is made irrelevant. Even though the unmap
function is invoked in the correct order, the device can still
corrupt skb_shared_info due to the IOTLB.

403

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Markuze, Vargaftik, Kupfer, Pismeny, Amit, Morrison, and Tsafrir

(iii) In response, a security-conscious admin may change the
default setting to strict mode, where the IOTLB is flushed
at every unmap. However, this severely degrades network-
ing performance [47, 49] and does not alleviate the secu-
rity threats on the system. Presumably, with strict mode
enabled, the IOVA that is used by the NIC to access that
skb_shared_info is no longer valid. This initially sounds
promising. The problem is that in many cases the device still
has legitimate WRITE access to the physical page of the
skb_shared_info. The vulnerability stems from the way
data is allocated. An RX sk_buff is almost exclusively
allocated via an API (e.g., netdev_alloc_skb) that cre-
ates a type (c) sub-page vulnerability (Figure 1(c)). The de-
vice can use the IOVA of a co-located buffer to access the
skb_shared_info it requires. Specifically, the buffers of
the driver RX ring are allocated sequentially, resulting in pairs
of successive RX descriptors that map the same page. Obvi-
ously, this holds as long as the buffer sizes are smaller than 4
KB. This is a reasonable assumption since the default MTU
size is 1500 B. These allocation functions, use a page_frag
mechanism to allocate the data buffers, which in turn con-
tain skb_shared_info. The page_frag is an efficient
method for allocating small buffers, and is often used by the
Linux network stack. In fact, it is used 344 times by network
drivers in Linux kernel 5.0. A page_frag is initialized by
allocating a contiguous memory region (usually 32 KB), set-
ting a va pointer to the beginning of the region, and setting
an offset to the end. An allocation request for B bytes
subtracts B bytes from the offset pointer and returns the
new value of the offset. In multi-core environments, the
page_frag uses a different buffer for each CPU and each
CPU has a single RX ring. As a result, each RX ring is served
by its own (per-CPU) contiguous buffer, as show in Figure 5).
This mechanism for memory allocation results in consecutive
data buffers often residing on the same memory page. Due to
this type (c) sub-page vulnerability, the NIC does not require
the invalidated IOVA to modify the skb_shared_info.
Instead, it can use the IOVA for the next data buffer.5 The
device still has write access due to the valid IOVA of the next
buffer (i.e., the striped area at the end of the page in Figure 4).

From this point on, we assume that the attacker can al-
ways modify the callback pointer. In the next subsections,
we demonstrate various compound DMA attacks in which an
attacker can exploit the OS design to obtain the kernel virtual
address of buffers containing malicious code; this completes
the trifecta of vulnerabilities.

5.3 RingFlood Compound Attack
A malicious device can generate a poisoned ROP stack in
each RX buffer. However, this is not sufficient to execute a

5Note that the lower 12 bits (i.e., the offset on the page) of the IOVA are
identical to the corresponding KVA bits.

successful code injection attack since the device has all the
IOVA for the RX buffers, but not the KVA.

In this attack, we take advantage of the fact that the boot
process is deterministic. At every reboot, the same set of
commands is executed in the same order, initiating the same
kernel modules and starting the same processes. While the
pages each module receives may vary in a multi-core environ-
ment due to timing issues, we do not expect the drift to be too
large.

We evaluated this assumption on our setup, running 256 re-
boots on Ubuntu 18.04 with Linux kernels 5.0 and 4.15. With
the mlx5_core driver, many PFNs repeat in more than 50% of
reboots on kernel 5.0 and more than 95% on kernel 4.15. The
4.15 driver version allocates much more memory, allocating
64 KB per RX buffer to facilitate the HW LRO feature. We
assume an attacker can gain access to an identical setup and
identify the most common PFN. Therefore, an adversary with
knowledge about the physical setup can deduce a valid KVA
for one of the RX pages containing a malicious buffer. This
provides the needed KVA. Thus, the device can execute the
attack as shown in Figure 4.

The chances of success for the RingFlood attack increase
with the memory footprint of the device driver. The mem-
ory footprint, in turn, depends on the NIC capabilities and
the number of cores (number of RX rings) on the server.
This means such attacks have a higher chance of success on
larger machines. For example, some NICs have a HW LRO
capability[50], where a NIC can aggregate multiple TCP pack-
ets into a single TCP packet that is larger than the MTU (e.g.,
bnx2x, mlx5_core). On drivers configured with these options,
each RX buffer is 64 KB, regardless of the MTU. As a re-
sult, these drivers have a much larger memory footprint. The
Mellanox mlx5_core driver on kernel 4.15 enables HW LRO
and, as a result, allocates 2 GB of memory per physical de-
vice port on a 32-core machine. On kernel 5.0, HW LRO is
disabled, and the driver allocates 2 KB per entry, thus only
using 64 MB per port.

5.4 Poisoned TX Compound Attack
The RingFlood attack, described in Section 5.3, allows a NIC
to execute arbitrary code, provided it has enough information
regarding the server’s physical layout and a sufficiently high
driver memory footprint. When deducing a valid PFN is not
an option (e.g., due to a low memory footprint), another way
of acquiring a valid KVA is needed.

In this next attack, the KVA is acquired by spoofing a
malicious transmitted (TX) packet. The attacker gains the
needed KVA by reading it from the skb_shared_info of
the sent packet. There are multiple ways in which a malicious
NIC device can initiate a TX flow on the server. We list a few
examples below:

404

Characterizing, Exploiting, and Detecting DMA Code Injection Vulnerabilities EuroSys ’21, April 26–29, 2021, Online, United Kingdom

struct skb_shared_info
void * destructor_arg;

skb_frag_t frags[MAX_SKB_FRAGS];{
Malicious Code

TX SKB(1)

(2) (2) (2)

READ ONLY

struct skb_shared_info
void * destructor_arg;

skb_frag_t frags[MAX_SKB_FRAGS];{
RX SKB

(3)

WRITE ONLY

(4)

struct page *
KVA pointer

Malicious Code Malicious Code

Figure 8. A TX sk_buff filled with malicious code provides the KVA for a DMA attack.

1. A userspace process can be coerced into echoing a
malicious buffer’s contents in various ways, including a
proxy server, a key/value store, and a streaming service.

2. A cloud VM (e.g., on GCP, AWS, or Azure) or publicly
accessible VM may be used to compromise the host in
the presence of a malicious device.6

3. Packet forwarding is enabled on the server.

Since a NIC has READ access to the skb_shared_info
of a TX packet, this also provides the NIC with READ access
to the frags array of skb_shared_info, as shown in
Figure 8. This array contains struct page pointers and
thus, leaks kernel pointers that allow the attacker to compro-
mise KASLR in addition to providing the PFNs of specific
pages containing the data (i.e., pages the device can read).

Once the content of the malicious buffer is echoed via one
of the methods mentioned above, the device can execute a
code injection attack in four steps:

1. The TX data and the fragments are mapped for the NIC
to read.

2. The NIC spoofs an RX packet and delays the comple-
tion notification of the TX packets so the malicious
buffer is not released prematurely.

3. The NIC identifies the poisoned buffer and translates
struct page to KVA (Section 2.4).

4. The NIC overwrites skb_shared_info with the
KVA retrieved during step 3.

In this scenario, the attacker does not require prior knowl-
edge regarding the physical setup since the echoed buffer
provides the KVA.

Note that an attacker will need to delay the TX completion
of the echoed buffer to ensure the contents are unchanged until
the ROP/JOP attack is executed. Moreover, a TX completion
event that fails to appear in due time will trigger a TX T/O
error that flushes all buffers and resets the driver. The T/O is
set by the driver, usually to a few seconds, which is sufficient
to complete the attack.

5.5 Forward Thinking Compound Attack
Packet forwarding is a standard Linux feature that allows a
Linux machine to serve as a router or a load balancer. Packet

6Indeed, Google’s OpenTitan [27] exemplifies that cloud providers actively
worry about the root of trust for their servers.

forwarding functionality is usually disabled by default on
Linux servers.

When this functionality is enabled, the NIC can indepen-
dently generate an RX packet to a legitimate destination. This
packet will then be forwarded to become a TX packet. How-
ever, unlike the TCP layer, which usually creates sk_buff
packets with fragments, device drivers often create a linear
sk_buff. Namely, the drivers do not fill the frags, which
the attacker uses to obtain a KVA. Device drivers, use the
napi_gro_receive function to pass the sk_buff to the
upper layer. This is the standard for most NIC drivers7).

In this case, the upper layer is the Generic Receive Offload
(GRO) layer [30]. The GRO attempts to aggregate multiple
TCP segments into a single large packet. Specifically, the
GRO converts multiple linear sk_buff buffers belonging to
a single TCP stream, into a single sk_buff with multiple
fragments. This sk_buff then traverses the Linux network
stack and becomes a TX packet. The attacker can use this TX
packet as described in the previous attack shown in Figure 8).

Packet forwarding, also opens up an additional attack op-
tion. An attacker may be interested in persistent surveillance
rather than overtaking the machine. Packet forwarding allows
the NIC to inspect arbitrary pages at will. Instead of sending
a TCP packet and letting the GRO layer fill in the frags
information, the NIC can generate a small UDP packet and
fill in the frags array with any arbitrary struct page
addresses within the system. As a result, the driver maps these
pages, providing READ access to the NIC for any page in the
system.

To avoid detection and preserve OS stability, the device
must undo the changes to skb_shared_info before cre-
ating a TX completion. That is, before letting the CPU know
that the packet was sent and its buffer can now be freed.
Otherwise, the OS will try freeing the pages, indicated by
skb_shared_info.

6 Attack Demonstrations
We implemented and demonstrated compound attacks against
the Linux kernel network stack. In order to demonstrate an
attack by a malicious NIC, we used a FireWire device similar
to Sang et al. [62]. We created an IOVA page table that is
shared between the FireWire and the actual NIC. Because

7It is used by 98 NIC drivers in Linux 5.0

405

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Markuze, Vargaftik, Kupfer, Pismeny, Amit, Morrison, and Tsafrir

struct skb_shared_info
void * destructor_arg;

skb_frag_t frags[MAX_SKB_FRAGS];{
• sk_buff #1 generated, skb_shared_info w/o pointers

unsigned char *data; struct sk_buff #1
…

… }

struct skb_shared_info
void * destructor_arg;

skb_frag_t frags[MAX_SKB_FRAGS];{
unsigned char *data; struct sk_buff #2

…

… }

struct skb_shared_info
void * destructor_arg;

skb_frag_t frags[MAX_SKB_FRAGS];{
unsigned char *data; struct sk_buff #1

… }

struct skb_shared_info
void * destructor_arg;

skb_frag_t frags[MAX_SKB_FRAGS];{
unsigned char *data; struct sk_buff #2

…

… }

• sk_buff #2 generated, skb_shared_info w/o pointers

…

Malicious Buffer

(4)

(3)
(3)

(1)

(2)

Figure 9. An RX sk_buff after GRO provides the KVA for a DMA attack.

the attacker machine can access the same pages as the NIC,
this allowed us to execute an attack using a programmable
interface, emulating a malicious NIC.

We created a malicious FireWire device by modifying the
Linux-IO Target (LIO) subsystem on the attacker machine.
The LIO subsystem supports hard disk emulation for remote
computers via the SPB2 protocol.
Test Setup. We used a 28-core Dell PowerEdge R730 server,
with Ubuntu 18.04 (kernel version 5.0), as our victim ma-
chine. This server is equipped with an Intel VT-d IOMMU,
a Broadcom NetXtreme BCM5720 Gigabit Ethernet NIC, a
Mellanox Technologies ConnectX-4 Ethernet NIC, and VIA
Technologies, Inc. VT6315 Series Firewire Controller. We
connected an identical machine to the victim via a FireWire
cable, to act as the attacker.
Executed Attacks. We executed the RingFlood attack on the
skb_shared_info structure to inject and run malicious
code in the kernel. Our exploit places a ROP gadget on the
DMA buffer page. To execute this ROP gadget, the device
points the struct’s callback pointer to a JOP gadget in the
kernel. The kernel then passes the callback in the %rdi reg-
ister to its containing struct. Thus, this pointer contains the
DMA buffer’s address. To complete the attack, we needed a
JOP [10] gadget that performs %rsp = %rdi + const.
We located such a gadget using the ROPgadget tool [61].

7 Applicability to Other OSs
The current state of IOMMU adaptation varies among differ-
ent OS vendors. We briefly discuss other OSs below.
Windows. Until recently, Windows had no IOMMU sup-
port, exposing it to single-step DMA attacks. In 2019, with
build 1803, Microsoft introduced Kernel DMA Protection

[51], which provides IOMMU protection by default with a
dedicated I/O page table per device. In addition, network
buffers are allocated from dedicated pools of memory, limit-
ing the possible exposure of sensitive data. However, a brief
exploration of the Windows Networking drivers’ API reveals
functions such as NdisAllocateNetBufferMdlAndData [52]
that allocates a NET_BUFFER structure and data in a single
memory buffer, exposing the OS to single-step attacks. The
NET_BUFFER vulnerability was previously described by
Markettos et al.[45].

MacOS. IOMMU protection is enabled by default. It also
uses dedicated memory for network I/O. MacOS, however,
does expose the mbuf data structure to the device, though
with some precautions such as blinding the exposed callback
pointer ext_free by XORing it with a secret cookie. Indeed,
this is sufficient to defend against single-step attacks. How-
ever, such an exposure of metadata opens up the MacOS to
potential compound attacks. Although the value of the se-
cret cookie is random, ext_free can receive only one of two
possible values. As a result, once an attacker compromises
MacOS KASLR (as demonstrated in [45]), the random cookie
is revealed by a single XOR operation.

FreeBSD. An mbuf struct that is used for networking ex-
poses the ext_free callback pointer. An attack on FreeBSD
via this callback pointer was demonstrated by Markettos et
al. [45]. To the best of our knowledge, as of October 2020,
this vulnerability still exists in the FreeBSD kernel.

8 Related Work
In this section, we cover DMA attacks in the presence of
IOMMU, defenses, and emerging ROP mitigation techniques.

406

Characterizing, Exploiting, and Detecting DMA Code Injection Vulnerabilities EuroSys ’21, April 26–29, 2021, Online, United Kingdom

DMA Attacks in the Presence of IOMMU. Beniamini demon-
strated attacks on cellular devices (e.g., iPhone 7, Nexus
5/6/6P), through their WiFi chips [7, 8]. The attack exploited
a Time of Check To Time of Use (TOCTTOU) vulnerabil-
ity in the NIC driver. Kupfer [38] demonstrated single-step
attacks exploiting weaknesses in the Linux FireWire driver.
In both cases, all the DMA writes were legal, made only to
buffers currently mapped to the device.
Thunderclap [45]. This work also considers sub-page vul-
nerabilities and single-step attacks. Markettos et al. developed
a security evaluation platform built on FPGA hardware. By
mimicking a legitimate peripheral device’s functionality, the
platform can convince a target operating system to grant it ac-
cess to regions of memory. They used this platform to demon-
strate single-step DMA attacks on Windows, macOS, and
FreeBSD. Our work takes a step forward in characterizing,
exploiting, and detecting DMA vulnerabilities. In particular:

• Thunderclap provides a taxonomy that differentiates
between data leakage and kernel pointer attacks. We
extend this taxonomy by characterizing the different
types of sub-page vulnerabilities (Section 3.2).

• We explicitly characterize the attributes required for a
successful code injection DMA attack. This allows us to
better reason about a DMA attack focusing separately
on each of its constituting parts.

• We introduce compound attacks and propose techniques
to identify the buffer’s KVA (Section 5.3, 5.4, 5.5),
which enables their execution.

• We demonstrate (Section 6) that Linux is not safe from
DMA attacks on the network data structures.

• We introduce new static [46] and dynamic [48] analysis
tools that identify sub-page vulnerabilities, run them
on Linux, and report many previously unknown DMA
vulnerabilities.

Adressing IOMMU Vulnerabilities. Boyd-Wickizer and Zel-
dovich [11] and LeVasseur et al. [41] suggested isolating un-
modified device drivers in user space programs and virtual
machines, respectively. Similarly, Cinch [3] used an isolated
red virtual machine to intercept bus traffic. These methods
could be applied to limit the damage of potential attacks in ad-
dition to other protection mechanisms. They do not, however,
prevent code execution in an isolated environment. By attack-
ing the isolation mechanism, attackers can still compromise
the entire system.

Markuze et al. suggested that the IOMMU driver should
use bounce buffers [47]. Typically, device drivers invoke
map/unmap requests for desired buffers through the DMA
API. According to their suggestion, instead of dynamically
mapping/unmapping pages, the DMA backend would copy
the buffer to/from designated pages with fixed mapping. By
keeping separate data pages for each device, they avoid data
co-location and, as a result, eliminate the sub-page granular-
ity vulnerability. Since the mappings are static, the issue of

deferred invalidation is eliminated as well. Nevertheless, this
solution imposes a large overhead of data copying and mem-
ory waste. In a later work, Markuze et al. suggested reducing
these overheads by implementing the DMA-Aware Malloc
for Networking (DAMN) [49]. The security of the system
still depends on developers avoiding mistakes (e.g., not us-
ing build_skb) and does not provide a solution for packet
forwarding or zero-copy I/O (e.g., sendfile, XDP [53]).

Intel’s sub-page security technology suggests protecting
fixed-sized buffers smaller than a page [34]. Since the buffers
are still fixed in size, the same vulnerability remains, albeit
for buffers smaller than a page. Intel’s Memory Protection
Extensions (MPX) lets the user define boundaries for buffers
and later explicitly checks that the corresponding pointers
are between these boundaries [31]. Oracle’s Silicon Secured
Memory (SSM) lets the user color buffers and associative
pointers [58]. The color is implicitly checked for a match
at each memory access. MPX, SSM, and other similar ap-
proaches may be used to build a secure alternative to IOMMU.

Emerging ROP Mitigation Techniques. Intel Control-Flow
Enforcement Technology (CET) is a new instruction set for
mitigating ROP attacks [33]. Processors that support CET
use two stacks simultaneously instead of the regular one;
the new shadow stack has only return addresses rather than
a full copy of the data. During each RET command, the
shadow stack address is checked, and the code continues
running only if the stacks agree on the address. Even if an
attacker manages to control the regular stack, the shadow
stack prevents the attack. Moreover, each legitimate indirect
jump target is marked with a special instruction. Thus, it is
impossible to jump to arbitrary locations in the code, and
JOP attacks are also prevented. Similarly, each legitimate call
target is also marked. De Raadt [18] recently announced the
Kernel Address Randomized Link (KARL) for OpenBSD.
Each time the system is booted, it links a new, randomized
kernel binary. As opposed to the Linux KASLR, this strong
randomization makes it harder to patch the payload during
run-time.

9 Discussion
By introducing and demonstrating compound attacks on the
Linux kernel, we have shown that IOMMU, as it is used
today, leaves the OS vulnerable to DMA attacks. Such vulner-
abilities have been considered to be caused by buggy device
drivers or poor, but isolated, driver design choices. We find
that it is often the OS design choices that compromise the
system security.

9.1 API
Existing APIs used for I/O operations and associated perfor-
mance considerations make it is extremely difficult not to
create a sub-page vulnerability that can later be exploited.
Thus, even well-written drivers can be subverted by the OS

407

EuroSys ’21, April 26–29, 2021, Online, United Kingdom Markuze, Vargaftik, Kupfer, Pismeny, Amit, Morrison, and Tsafrir

(e.g., bnx2 by deferred protection), as in the following exam-
ples.

• The dma_map_single call accepts a pointer and the buffer
length. This API insinuates that only the mapped bytes are
exposed, when, in fact, the whole page is accessible.
• dma_unmap_single, insinuates that the buffer is not acces-

sible to the device after the call. This does not hold due to both
the deferred protection and type (c) sub-page vulnerabilities.
• build_skb facilitates building an sk_buff around an ar-

bitrary I/O buffer, in turn, embedding critical data structures
inside the I/O buffer.
• While page_frag (Section 5.2.2) is an efficient alloca-

tor, it inherently creates a type (c) sub-page vulnerability.
• By design, skb_shared_info is built within an I/O

buffer. Avoiding type (b) sub-page vulnerabilities imposes a
challenge.

9.2 Conclusion
The success of a DMA attack relies on the exposure of re-
stricted metadata fields, caused by sub-page vulnerability. To
prevent such exposure, previous works proposed separating
the I/O memory from CPU memory [49], by providing a sep-
arate allocator for networking. Nevertheless, this API can
be easily thwarted by device drivers via functions, such as
build_skb, that add a vulnerable skb_shared_info
into an I/O region. Moreover, these solutions are focused
solely on network devices, leaving the system unprotected
against other DMA-capable devices such as FireWire, USB
C, NVMe, and more.

To achieve better DMA security in future OSs, one possible
direction is to consider the segregation of I/O memory from
OS memory. Alternatively, to prevent the existence of sensi-
tive metadata on I/O pages, we propose to open-source and
offer SPADE [46] and D-KASAN [48] to validate the security
of the system in the development and deployment stages.

Acknowledgments
This work was funded in part by ISF under grant 2005/17,
Blavatnik ICRC at TAU, Technion Hiroshi Fujiwara Cyber Se-
curity Research Center, the Israel National Cyber Directorate,
and VMware Research.

References
[1] AMD. AMD IOMMU architectural specification, rev 3.00. https:

//www.amd.com/system/files/TechDocs/48882_IOMMU.pdf, Dec
2016. Accessed: June 2020.

[2] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster.
vIOMMU: efficient IOMMU emulation. In ATC 11, 2011. https://www.
usenix.org/legacy/events/atc11/tech/final_files/Amit.pdf Accessed:
June 2020.

[3] Sebastian Angel, Riad S Wahby, Max Howald, Joshua B Leners,
Michael Spilo, Zhen Sun, Andrew J Blumberg, and Michael Walfish.
Defending against malicious peripherals with Cinch. In USENIXSEC,
2016. https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/angel Accessed: June 2020.

[4] argp and karl. Exploiting UMA : FreeBSD kernel heap exploits.
PHRACK, 13(66), November 2009. http://phrack.org/issues/66/8.
html Accessed: June 2020.

[5] Damien Aumaitre and Christophe Devine. Subverting windows 7 x64
kernel with dma attacks. HITBSecConf Amsterdam, 2010.

[6] Michael Becher, Maximillian Dornseif, and Christian N Klein.
FireWire: all your memory are belong to us. https://cansecwest.
com/core05/2005-firewire-cansecwest.pdf, 2010. CanSecWest Pre-
sentation. Accessed: Jun 2020.

[7] Gal Beniamini. Over the air - vol. 2, pt. 3: Exploiting the Wi-Fi stack
on Apple devices. https://googleprojectzero.blogspot.co.il/2017/
10/over-air-vol-2-pt-3-exploiting-wi-fi.html, 2017. Accessed: June
2020.

[8] Gal Beniamini. Over the air: Exploiting broadcom’s wi-fi stack. Last
retrieved, 7, 2017.

[9] Erik-Oliver Blass and William Robertson. Tresor-hunt: attacking cpu-
bound encryption. In Proceedings of the 28th Annual Computer Secu-
rity Applications Conference, pages 71–78. ACM, 2012.

[10] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. Jump-
oriented programming: a new class of code-reuse attack. In ASIACCS,
2011.

[11] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating malicious
device drivers in Linux. In ATC, 2010.

[12] Hsiao-keng Jerry Chu. Zero-copy tcp in solaris. In Proceedings of
the 1996 annual conference on USENIX Annual Technical Conference,
pages 21–21. Usenix Association, 1996.

[13] Catalin Cimpanu. $300 device can steal Mac FileVault2 pass-
words. https://www.bleepingcomputer.com/news/security/-300-
device-can-steal-mac-filevault2-passwords/, December 2016. Ac-
cessed: June 2020.

[14] Jonathan Corbet. Hot and cold pages. https://lwn.net/Articles/14768/.
Accessed: Jun 2020.

[15] Jonathan Corbet. The SLUB allocator. https://lwn.net/Articles/
229984/, April 2007. Accessed: June 2020.

[16] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux
Device Drivers: Where the Kernel Meets the Hardware. " O’Reilly
Media, Inc.", 2005.

[17] Arnaldo Carvalho de Melo. The 7 dwarves: debugging information
beyond gdb. In Proceedings of the Linux Symposium. Citeseer, 2007.

[18] Theo de Raadt. KARL - kernel address randomized link. https://
marc.info/?l=openbsd-tech&m=149732026405941, October 2017.
Accessed: Jun 2020.

[19] Robert C De Ward and Kenneth J Thurber. Method for providing virtual
addressing for externally specified addressed input/output operations,
May 15 1979. US Patent 4,155,119.

[20] Linux Kernel Developers. The kernel address sanitizer (kasan)—the
linux kernel documentation, 2017. https://www.kernel.org/doc/html/
latest/dev-tools/kasan.html.

[21] Maximillian Dornseif. 0wned by an ipod. Presentation, PacSec, 2004.
[22] Loïc Duflot, Yves-Alexis Perez, Guillaume Valadon, and Olivier Levil-

lain. Can you still trust your network card. CanSecWest/core10, pages
24–26, 2010.

[23] Jake Edge. Kernel address space layout randomization. https://lwn.
net/Articles/569635/. Accessed Jun 2020.

[24] Ulf Frisk. Direct memory attack the kernel. Proceedings of DEFCON,
24, 2016.

[25] Sean Gallagher. Photos of an NSA “upgrade” factory
show Cisco router getting implant. Ars Technica, 14, 2014.
http://arstechnica.com/tech-policy/2014/05/\photos-of-an-nsa-
upgrade-factory-show-cisco\-router-getting-implant/ Accessed:
June 2020.

[26] Pavel Gladyshev and Afrah Almansoori. Reliable acquisition of ram
dumps from intel-based apple mac computers over firewire. In Interna-
tional Conference on Digital Forensics and Cyber Crime, pages 55–64.

408

https://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
https://www.amd.com/system/files/TechDocs/48882_IOMMU.pdf
https://www.usenix.org/legacy/events/atc11/tech/final_files/Amit.pdf
https://www.usenix.org/legacy/events/atc11/tech/final_files/Amit.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/angel
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/angel
http://phrack.org/issues/66/8.html
http://phrack.org/issues/66/8.html
https://cansecwest.com/core05/2005-firewire-cansecwest.pdf
https://cansecwest.com/core05/2005-firewire-cansecwest.pdf
https://googleprojectzero.blogspot.co.il/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://googleprojectzero.blogspot.co.il/2017/10/over-air-vol-2-pt-3-exploiting-wi-fi.html
https://www.bleepingcomputer.com/news/security/-300-device-can-steal-mac-filevault2-passwords/
https://www.bleepingcomputer.com/news/security/-300-device-can-steal-mac-filevault2-passwords/
https://lwn.net/Articles/14768/
https://lwn.net/Articles/229984/
https://lwn.net/Articles/229984/
https://marc.info/?l=openbsd-tech&m=149732026405941
https://marc.info/?l=openbsd-tech&m=149732026405941
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
http://arstechnica.com/tech-policy/2014/05/\ photos-of-an-nsa-upgrade-factory-show-cisco\ -router-getting-implant/
http://arstechnica.com/tech-policy/2014/05/\ photos-of-an-nsa-upgrade-factory-show-cisco\ -router-getting-implant/

Characterizing, Exploiting, and Detecting DMA Code Injection Vulnerabilities EuroSys ’21, April 26–29, 2021, Online, United Kingdom

Springer, 2010.
[27] Google. Opentitan. https://opentitan.org/. Accessed Jun 2020.
[28] Free Standards Group. Dwarf. http://dwarfstd.org/.
[29] Dave Hansen. x86: mm: set TLB flush tunable to sane value (33).

linux-mm mailing list https://patchwork.kernel.org/patch/4066561/,
2014. Accessed: Jun 2020.

[30] Red Hat. Performance tuning guide 8.10. https://access.redhat.
com/documentation/en-us/red_hat_enterprise_linux/6/html/
performance_tuning_guide/network-nic-offloads. Accessed: June
2020.

[31] INTEL. Intel-64 and IA-32 architectures software developer’s man-
ual. https://software.intel.com/en-us/articles/intel-sdm, December
2016. Accessed: Jun 2020.

[32] INTEL. Intel virtualization technology for directed I/O - architecture
specification - Rev. 2.4. http://www.intel.com/content/dam/www/
public/us/en/documents/product-specifications/vt-directed-io-
spec.pdf, June 2016. Accessed: June 2020.

[33] INTEL. Intel control-flow enforcement technology preview - Rev.
2.0. https://software.intel.com/sites/default/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf, June 2017. Ac-
cessed: Jun 2020.

[34] INTEL. Intel architecture instruction set extensions and future features
programming reference - may 2018. https://software.intel.com/
sites/default/files/managed/c5/15/architecture-instruction-set-
extensions-programming-reference.pdf, May 2018. Accessed: June
2020.

[35] Corbet Jonathan. x86 nx support. https://lwn.net/Articles/87814/,
June 2004. Accessed: June 2020.

[36] Linux Kernel. X86 kernel memory layout. https://elixir.bootlin.com/
linux/latest/source/Documentation/x86/x86_64/mm.rst. Accessed:
June 2020.

[37] Eduardo Kortright and David Cordes. Cnest and cscope: Tools for the
literate programming environment. In Proceedings IEEE Southeast-
con’92, pages 604–609. IEEE, 1992.

[38] Gil Kupfer, Dan Tsafrir, and Nadav Amit. Iommu-resistant dma attacks.
Master’s thesis, Computer Science Department, Technion, 2018.

[39] Bell Labs. Cscope. http://cscope.sourceforge.net/.
[40] Evangelos Ladakis, Lazaros Koromilas, Giorgos Vasiliadis, Michalis

Polychronakis, and Sotiris Ioannidis. You can type, but you can’t hide:
A stealthy gpu-based keylogger. In Proceedings of the 6th European
Workshop on System Security (EuroSec), 2013.

[41] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Un-
modified device driver reuse and improved system dependability via
virtual machines. In OSDI, 2004.

[42] Carsten Maartmann-Moe. Inception. Break & Enter:, 2011. Accessed:
June 2020.

[43] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan Tsafrir. ri-
ommu: Efficient iommu for i/o devices that employ ring buffers. ACM
SIGPLAN Notices, 50(4):355–368, 2015.

[44] Moshe Malka, Nadav Amit, and Dan Tsafrir. Efficient intra-operating
system protection against harmful dmas. In 13th {USENIX} Conference
on File and Storage Technologies ({FAST} 15), pages 29–44, 2015.

[45] A Theodore Markettos, Colin Rothwell, Brett F Gutstein, Allison
Pearce, Peter G Neumann, Simon W Moore, and Robert NM Wat-
son. Thunderclap: Exploring vulnerabilities in operating system iommu
protection via dma from untrustworthy peripherals. In NDSS, 2019.

[46] Alex Markuze. Sub-Page Analysis for DMA Exposure (SPADE). https:
//github.com/Markuze/mmo-static.git, 2021.

[47] Alex Markuze, Adam Morrison, and Dan Tsafrir. True IOMMU pro-
tection from DMA attacks: When copy is faster than zero copy. In
ASPLOS, pages 249–262, 2016.

[48] Alex Markuze and Boris Pismeny. DMA Kernel Address SANitizer
(DMA-KASAN). https://github.com/Markuze/dma-kasan.git, 2021.

[49] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan Tsafrir. DAMN:
Overhead-free iommu protection for networking. In ASPLOS, 2018.

[50] Mellanox. Mellanox adapters programmer’s reference man-
ual. http://www.mellanox.com/related-docs/user_manuals/
Ethernet_Adapters_Programming_Manual.pdf. Accessed: June
2020.

[51] Microsoft. Kernel dma protection. https://docs.microsoft.com/en-
us/windows/security/information-protection/kernel-dma-
protection-for-thunderbolt.

[52] Microsoft. Ndisallocatenetbuffermdlanddata. https://docs.
microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-
ndis-ndisallocatenetbuffermdlanddata.

[53] David Miller. Xdp mythbusters. https://netdevconf.info/2.1/slides/
apr7/miller-XDP-MythBusters.pdf. Accessed: June 2020.

[54] Tilo Müller, Benjamin Taubmann, and Felix C Freiling. Trevisor.
In International Conference on Applied Cryptography and Network
Security, pages 66–83. Springer, 2012.

[55] Karsten Nohl and Jakob Lell. Badusb-on accessories that turn evil.
Black Hat USA, 1:9, 2014.

[56] Hussein Nur. Randomizing structure layout. https://lwn.net/Articles/
722293/, May 2017. Accessed: June 2020.

[57] United States. National Bureau of Standards. Computer Development,
SEAC and DYSEAC, at the National Bureau of Standards, Washington.
US Government Printing Office, 1954.

[58] ORACLE. Inoculating software, boosting quality. http://www.oracle.
com/technetwork/database/bi-datawarehousing/sas/con8216-
final-2760803.pdf, 2015. CON8216. Accessed: Jun 2020.

[59] Omer Peleg, Adam Morrison, Benjamin Serebrin, and Dan Tsafrir.
Utilizing the {IOMMU} scalably. In 2015 {USENIX} Annual Technical
Conference (USENIX ATC), pages 549–562, 2015.

[60] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
Return-oriented programming: Systems, languages, and applications.
TISSEC, 15(1):2:1–2:34, March 2012.

[61] Jonathan Salwan. Ropgadget. https://github.com/JonathanSalwan/
ROPgadget. Accessed Mar 2021.

[62] Fernand Lone Sang, Eric Lacombe, Vincent Nicomette, and Yves
Deswarte. Exploiting an I/OMMU vulnerability. In MALWARE, pages
7–14, 2010.

[63] Patrick Stewin and Iurii Bystrov. Understanding dma malware. In
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 21–41. Springer, 2012.

[64] FinFisher surveillance. Finfirewire, 2014. (WikiLeaks).
[65] Aaron Walters. The volatility framework: Volatile memory artifact

extraction utility framework, 2007.
[66] Paul Willmann, Scott Rixner, and Alan L Cox. Protection strategies for

direct access to virtualized i/o devices. In USENIX Annual Technical
Conference, pages 15–28, 2008.

[67] Rafal Wojtczuk et al. Subverting the xen hypervisor. Black Hat USA,
2008:2, 2008.

[68] Lucas Womack, Ronald Mraz, and Abraham Mendelson. A study of
virtual memory mtu reassembly within the powerpc architecture. In
Proceedings Fifth International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, pages 81–90.
IEEE, 1997.

[69] Kaiyuan Yang, Matthew Hicks, Qing Dong, Todd Austin, and Dennis
Sylvester. A2: Analog malicious hardware. In 2016 IEEE symposium
on security and privacy (SP), pages 18–37. IEEE, 2016.

[70] Jiewen Yao and Vincent Zimmer. A tour beyond bios using intel vt-d
for dma protection in uefi bios, 2015.

[71] Jonas Zaddach, Anil Kurmus, Davide Balzarotti, Erik-Oliver Blass,
Aurélien Francillon, Travis Goodspeed, Moitrayee Gupta, and Ioannis
Koltsidas. Implementation and implications of a stealth hard-drive back-
door. In Proceedings of the 29th annual computer security applications
conference, pages 279–288. ACM, 2013.

409

https://opentitan.org/
http://dwarfstd.org/
https://patchwork.kernel.org/patch/4066561/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-nic-offloads
https://software.intel.com/en-us/articles/intel-sdm
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://lwn.net/Articles/87814/
https://elixir.bootlin.com/linux/latest/source/Documentation/x86/x86_64/mm.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/x86/x86_64/mm.rst
http://cscope.sourceforge.net/
https://github.com/Markuze/mmo-static.git
https://github.com/Markuze/mmo-static.git
https://github.com/Markuze/dma-kasan.git
http://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
http://www.mellanox.com/related-docs/user_manuals/Ethernet_Adapters_Programming_Manual.pdf
https://docs.microsoft.com/en-us/windows/security/information-protection/kernel-dma-protection-for-thunderbolt
https://docs.microsoft.com/en-us/windows/security/information-protection/kernel-dma-protection-for-thunderbolt
https://docs.microsoft.com/en-us/windows/security/information-protection/kernel-dma-protection-for-thunderbolt
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatenetbuffermdlanddata
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatenetbuffermdlanddata
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ndis/nf-ndis-ndisallocatenetbuffermdlanddata
https://netdevconf.info/2.1/slides/apr7/miller-XDP-MythBusters.pdf
https://netdevconf.info/2.1/slides/apr7/miller-XDP-MythBusters.pdf
https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/
http://www.oracle.com/technetwork/database/bi-datawarehousing/sas/con8216-final-2760803.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/sas/con8216-final-2760803.pdf
http://www.oracle.com/technetwork/database/bi-datawarehousing/sas/con8216-final-2760803.pdf
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget

	Abstract
	1 Introduction
	2 Background
	2.1 DMA Attacks
	2.2 IOMMU
	2.3 DMA API
	2.4 OS Defenses

	3 Categorizing DMA Risks
	3.1 Threat Model
	3.2 Sub-Page Vulnerabilities
	3.3 Vulnerability Attributes for Code Injection

	4 Detecting Sub-Page Vulnerabilities
	4.1 Sub-Page Analysis for DMA Exposure
	4.2 DMA Kernel Address SANitizer
	4.3 Discussion and Limitations

	5 Compound DMA Attacks
	5.1 Obtaining a Callback Pointer
	5.2 Existence of a Time Window
	5.3 RingFlood Compound Attack
	5.4 Poisoned TX Compound Attack
	5.5 Forward Thinking Compound Attack

	6 Attack Demonstrations
	7 Applicability to Other OSs
	8 Related Work
	9 Discussion
	9.1 API
	9.2 Conclusion

	Acknowledgments
	References

