
Introduction to Abstract Interpretation

Bruno Blanchet

Département d’Informatique

École Normale Supérieure, Paris

and Max-Planck-Institut für Informatik

Bruno.Blanchet@ens.fr

November 29, 2002

Abstract

We present the basic theory of abstract interpretation, and its application to static
program analysis. The goal is not to give an exhaustive view of abstract interpretation,
but to give enough background to make papers on abstract interpretation more under-
standable.

Notations: λx.M denotes the function that maps x to M . f [x 7→ M] denotes the function
f extended so that x is mapped to M . If f was already defined at x, the new binding replaces
the old one.

1 Introduction

The goal of static analysis is to determine runtime properties of programs without executing
them. (Scheme of an analyzer: Program → Analyzer → Properties.) Here are some examples
of properties can be proved by static analysis:

• For optimization:

– Dead code elimination

– Constant propagation

– Live variables

– Stack allocation (more complex)

• For verification:

– Absence of runtime errors: division by zero, square root of negative numbers,
overflows, array index out of bounds, pointer dereference outside objects, . . .

– Worst-case execution time (see Wilhelm’s work with his team and AbsInt)

– Security properties (secrecy, authenticity of protocols, . . .)

1

However, most interesting program properties are undecidable. The basic result to show
undecidability is the undecidability of the halting problem.

Proof By contradiction. Assume that there exists Halt(P,E) returning Yes when P termi-
nates on entry E, No otherwise. Consider P’(P) = if Halt(P,P) then loop else stop.

• If P’(P’) loops, Halt(P’,P’) = true, so P’(P’) stops: contradiction.

• If P’(P’) stops, Halt(P’,P’) = false, so P’(P’) loops: contradiction.

2

Illustration: Give a program that terminates if and only if Fermat’s theorem is wrong.
Most program properties can be reduced to the halting problem. So we have to perform

approximations.
These approximations must be sound (or correct) approximations: if the system gives

a definite answer, then this answer is true. But sometimes the system is going to answer
“maybe”. We say the system is not complete. (This notion of approximation is different from
numerical approximations that give an answer close to the exact value.)

We want to formalize these approximations, to be able to prove the soundness of the
analyses. First, we formalize the meaning of programs (semantics), then its approximations.
(Scheme: semantics, exact, concrete properties → approximate, abstract properties.) Ab-
stract interpretation is a theory of approximation.

2 A simple language

2.1 Syntax

Expressions: E ::= x | n | E + E | E − E | E ∗ E | E/E | E ≥ E | . . .

C ::= commands
end end
x := E assignment
if E goto n conditional
input x input
print E print

A program is a function Prog from integers to commands. (Indicates which command is
at each address in the program.)

2.2 Trace semantics

The state of the system, here is the program counter (pc), which says what is the next
command to execute, and the values of the variables (recorded in an environment). We
assume that variables take integer values, and we ignore problems of overflow (that is, we
compute in Z).

2

ρ ∈ Env = Var → Z

pc ∈ PC
s ∈ State = PC × Env
Definition of the semantics:

1. Semantics of expressions: [[E]]ρ ∈ Z. (In case of error, for instance, division by 0, we
say that [[E]]ρ is not defined. We could also have a special value ⊥ to represent that. In
the same line, ρ is a partial map, defined only on variables that have been initialized.)

[[x]]ρ = ρ(x).

[[E1 + E2]]ρ = [[E1]]ρ + [[E2]]ρ, etc.

2. Semantics of commands: pc, ρ → pc ′, ρ′

If Prog(pc) = x := E, pc, ρ → pc + 1, ρ[x 7→ [[E]]ρ] (if [[E]]ρ is defined)

If Prog(pc) = input x, pc, ρ → pc + 1, ρ[x 7→ v] for some v ∈ Z.

If Prog(pc) = print E, pc, ρ → pc + 1, ρ, if [[E]]ρ is defined.

If Prog(pc) = if E goto n,
pc, ρ → n, ρ if [[E]]ρ 6= 0.
pc, ρ → pc + 1, ρ if [[E]]ρ = 0.

The semantics of commands is a transition system. For a given program, and given user
inputs, we can build a sequence of states, such that we go from one state to the next one
following one of the above transitions. Such a sequence of states is said to be a trace. A
program can have several execution traces, depending of the user input, so the semantics of
a program is a set of traces rather than a single trace.

Give an example of program, and its semantics.

1: input x

2: if x <= 0 goto 4

3: print 10/x

4: input y

5: print y*y*x

1: x := 0;

2: if x >= y goto 5

3: x := x+1;

4: goto 2:

5: print x

3 Approximation

3.1 Intuition

We want to prove properties of a program, in the style: “all traces of the program satisfy
a given condition”. To do this, we overapproximate the set of traces, that is, we compute

3

a superset of the set of traces, possibly in a more efficient representation. (For properties
depending only on one state, that is, invariants, we can also simply overapproximate the set
of states of the program.)

For instance, if your program uses two variables x and y, you may wish to approximate
the set of values of these variables. This can be done using various approximations (show
some schemes, like those of P. Cousot).

We also would like to compare analyses: which analysis is more precise than the other ?
An analysis is more precise when it yields a smaller superset of the set of traces. The precision
yields an ordering on the approximations of the set of traces. All correct approximations are
the ones that are greater (in the precision ordering) than the smallest correct one, namely
the set of traces itself.

When we represent sets of traces/states by other structures, we have a similar precision
ordering on those structures (example: intervals [a, b] ≤ [a′, b′] iff a ≥ a′ and b ≤ b′).

3.2 Order, Lattices, complete lattices.

Definition 1 (Partially ordered set) A partially ordered set (poset) is a set S equipped
with a binary relation ≤ such that:

1. ≤ is reflexive: ∀a ∈ S, a ≤ a.

2. ≤ is transitive: ∀a, b, c ∈ S, if a ≤ b and b ≤ c then a ≤ c.

3. ≤ is antisymmetric: ∀a, b ∈ S, if a ≤ b and b ≤ a, then a = b.

c ∈ S is an upper bound of X ⊆ S if and only if ∀c′ ∈ X, c′ ≤ c.
c ∈ S is a lower bound of X ⊆ S if and only if ∀c′ ∈ X, c ≤ c′.
c ∈ S is the least upper bound of X ⊆ S if and only if ∀c′ ∈ X, c′ ≤ c, and ∀c′′ ∈ S such

that ∀c′ ∈ X, c′ ≤ c′′, we have c ≤ c′′. When it exists, the least upper bound is unique. The
greatest lower bound is similar.

The ordering is not necessarily total, that is, we may not have a ≤ b or b ≤ a. Two
elements can be incomparable. (Example: parts of S ordered by inclusion. {a} incomparable
with {b} if a 6= b. ⊥ = ∅, > = S, t = ∪, u = ∩)

Definition 2 (Lattice) A lattice is a partially ordered set L(≤) such that for all a, b in L,
a and b have a least upper bound at b and a greatest lower bound au b. This lattice will be
denoted by L(≤,t,u).

In a lattice, all finite sets have least upper bounds and greatest lower bounds, but not
necessarily infinite sets.

Definition 3 (Complete lattice) A complete lattice is a partially ordered set L(≤) such
that every subset X of L has a least upper bound tX and a greatest lower bound uX. In
particular, L has a least element ⊥ = t∅ and a greatest element > = tL. This lattice will
be denoted by L(≤,⊥,>,t,u).

4

Proposition 1 If S is a set, P(S)(⊆, ∅, S,∪,∩) is a complete lattice.

We adopt the precision ordering, that is, a ≤ b means intuitively that a is more precise
than b; a gives more information than b. (Example on intervals [a, b] ≤ [a′, b′] iff a ≥ a′ and
b ≤ b′. The lattice of intervals is {∅}∪{[a, b] | a ≤ b, a ∈ Z∪{−∞}, b ∈ Z∪{∞}}. By a slight
abuse of notation, we denote the interval [a, b] even when one bound is infinite. Normally,
the bracket is in the other direction for infinite bounds:] −∞, +∞[.)

3.3 Collecting semantics

The collecting semantics is the semantics that computes the set of possible traces. Formally,
we can define it by

Tr = {s1 → · · · → sn | s1 is the initial state, si → si+1 is an allowed transition}

The set of reachable states is defined by

Sr = {s | s1 → · · · → s ∈ Tr}

The set of all traces, of all states, are ordered by inclusion. Then, they form a complete
lattice (the concrete lattice).

3.4 Galois connections

A few words on Evariste Galois (1811-1832), French mathematician. He died in a duel,
and in the night before, he wrote down much of his theory. He proved that no algebraic
formula in radicals exists that gives the general solution of algebraic equations of degree at
least 5. This result is based on group theory, of which he is a precursor. He uses so-called
“Galois connections” between groups. In the definition below, one of the orderings is reversed
with respect to Galois’ original definition, so purists say semi-dual Galois connections. (The
reversal of the ordering gives better properties for the composition of Galois connections,
see 4.2 below.)

Definition 4 (Galois connection [10, Definition 5.3.0.1][11, Example 10]) Let L1(≤1

) and L2(≤2) be posets. (α, γ) is a Galois connection (or pair of adjoined functions) between
L1 and L2 if and only if α ∈ L1 → L2, γ ∈ L2 → L1 and

∀x ∈ L1, ∀y ∈ L2, α(x) ≤2 y ⇔ x ≤1 γ(y).

This is denoted by:

(L1,≤1)
γ
�
α

(L2,≤2).

(L1,≤1) is the concrete lattice, (L2,≤2) is the abstract lattice, α is said to be the
abstraction and γ the concretization. (Scheme)

The two properties α(x) ≤2 y and x ≤1 γ(y) both mean that y is a correct approximation
of the concrete property x. α(x) is the most precise approximation of x ∈ L1 in L2. γ(y) is
the least precise element of L1 which can be correctly approximated by y ∈ L2.

5

3.5 Examples of Galois connections

Examples: abstraction of a set of values into

• constants: The concrete lattice is P(S) ordered by inclusion, for some set S. The
abstract lattice contains ⊥, c,>, for each constant c ∈ S, ordered by ⊥ ≤ c ≤ >.

The abstraction is defined by α(∅) = ⊥, α({c}) = c, α(S) = > otherwise.

The concretization is defined by γ(⊥) = ∅, γ(c) = {c}, γ(>) = S.

• sign. We can use parts of {−, 0, +} to represent signs. So for instance a value that may
positive or zero is represented by {0, +}. The concrete lattice is Z, the abstract lattice
P({−, 0, +}). Both are ordered by inclusion.

The abstraction is then defined by

α(S) = {+} if S∩]0, +∞[6= ∅

∪ {0} if 0 ∈ S

∪ {−} if S∩] −∞, 0[6= ∅

The concretization is defined by

γ(S]) =] −∞, 0[if − ∈ S]

∪ {0} if 0 ∈ S]

∪]0, +∞[if + ∈ S]

• interval. The concrete lattice is P(Z) ordered by inclusion. The abstract lattice is
{∅} ∪ {[a, b] | a ≤ b, a ∈ Z ∪ {−∞}, b ∈ Z ∪ {∞}}. The ordering is [a, b] ≤ [a′, b′] if and
only if a′ ≤ a and b ≤ b′ (the ordering corresponds to the inclusion of the corresponding
intervals), and ∅ ≤ [a, b].

The abstraction is defined by: if S = ∅, α(S) = ∅, otherwise α(S) = [min S, maxS]).

The concretization is defined by γ(∅) = ∅, γ([a, b]) = [a, b].

• congruence. The concrete lattice is again P(Z) ordered by inclusion. The abstract
lattice contains ∅ and (a, b), a ∈ [0, b − 1], b > 0 means x ≡ a(b), that is ∃y, x = a + by.

The abstraction is defined as follows: α(∅) = ∅. Take S non empty, x0 ∈ S, let b be the
greatest common divisor of x − x0 for x ∈ S, and a = x0 mod b, then α(S) = (a, b).

3.6 Properties

Proposition 2 (α, γ) is a Galois connection if and only if α and γ are monotone, (α ◦
γ)(y) ≤2 y, and (γ ◦ α)(x) ≥1 x [10, Theorem 5.3.0.4].

Intuitively, α monotone means that the best approximation of a more precise information is
also more precise. (γ ◦ α)(x) ≥1 x means that by first approximating then concretizing, you
have necessarily less information than at the beginning.

6

Proof First assume that (α, γ) is a Galois connection.

1. (α ◦ γ)(y) ≤2 y if and only if γ(y) ≤1 γ(y) which is true.

2. x ≤1 (γ ◦ α)(x) if and only if α(x) ≤2 α(x), which is true.

3. α is monotone: let x ≤1 x′. α(x) ≤2 α(x′) if and only if x ≤1 γ(α(x′)), which is true,
since x ≤1 x′ and x′ ≤1 (γ ◦ α)(x′).

4. γ is monotone: let y ≤2 y′. γ(y) ≤1 γ(y′) if and only if α(γ(y)) ≤2 y′, which is true
since (α ◦ γ)(y) ≤2 y and y ≤2 y′.

For the converse, assume α(x) ≤2 y. Then γ(α(x)) ≤1 γ(y) since γ is monotone. Moreover,
x ≤1 (γ ◦ α)(x), so x ≤1 γ(y). Conversely, assume x ≤1 γ(y). Then α(x) ≤2 α(γ(y)) since α
is monotone. Moreover, (α ◦ γ)(y) ≤2 y, so α(x) ≤2 y. 2

Proposition 3 Let L1(≤1,⊥1,>1,t1,u1) and L2(≤2,⊥2,>2,t2,u2) be complete lattices.
Let (α, γ) be a Galois connection between L1 and L2.

1. [10, Corollary 5.3.0.5, (3)]: Each function in the pair (α, γ) uniquely determines the
other:

α(x) = u2{y ∈ L2 | x ≤1 γ(y)},

γ(y) = t1{x ∈ L1 | α(x) ≤2 y}.

2. [10, Corollary 5.3.0.5, (4)] α is a complete join-morphism (i.e. is additive: α(tS) =
t{α(x) | x ∈ S), α(⊥1) = ⊥2.

γ is a complete meet-morphism (i.e. γ(uS) = u{γ(x) | x ∈ S}), γ(>2) = >1.

Proof 1. If x ≤1 γ(y), then α(x) ≤ y, so α(x) ≤ u2{y ∈ L2 | x ≤1 γ(y)}. Moreover,
α(x) ∈ L2 and x ≤1 γ(α(x)), so α(x) ∈ {y ∈ L2 | x ≤1 γ(y)}, so α(x) ≥ u2{y ∈ L2 |
x ≤1 γ(y)}, hence α(x) = u2{y ∈ L2 | x ≤1 γ(y)}.

The proof is similar for γ.

2. Let X ⊆ L1. Let us show that α(t1X) = t2{α(x) | x ∈ X}.

a) t2{α(x) | x ∈ X} ≤ α(t1X) comes from the monotony of α.

Precisely, for all x ∈ X, x ≤1 t1X, so α(x) ≤2 α(t1X) since α is monotone. So
t2{α(x) | x ∈ X} ≤ α(t1X).

b) To show α(t1X) ≤2 t2{α(x) | x ∈ X}, we show t1X ≤1 γ(t2{α(x) | x ∈ X}). Let
x ∈ X. α(x) ≤2 t2{α(x) | x ∈ X}, so x ≤1≤1 γ(t2{α(x) | x ∈ X}) by the definition of
Galois connections. Then t1X ≤1 γ(t2{α(x) | x ∈ X}), hence the result.

We have α(t1∅) = t2∅, so α(⊥1) = ⊥2.

The proof is similar for γ.
2

7

Proposition 4 Let L1(≤1,⊥1,>1,t1,u1) and L2(≤2,⊥2,>2,t2,u2) be complete lattices.
If α : L1 → L2 is a complete join-morphism and γ(y) = t1{x ∈ L1 | α(x) ≤2 y}, then

(α, γ) is a Galois connection.
If γ : L2 → L1 is a complete meet-morphism and α(x) = u2{y ∈ L2 | x ≤1 γ(y)}, then

(α, γ) is a Galois connection.

Proof • First point: Let α : L1 → L2 be a complete join-morphism and γ(y) = t1{x ∈
L1 | α(x) ≤2 y}.

a) If α(x) ≤ y, then x ∈ {x′ ∈ L1 | α(x′) ≤2 y}, so x ≤ γ(y).

b) If x ≤ γ(y), x ≤ t1{x
′ ∈ L1 | α(x′) ≤2 y}, so α(x) ≤ t1{α(x′) ∈ L1 | α(x′) ≤2 y}

since α is a complete join-morphism, so α(x) ≤ y.

Then (α, γ) is a Galois connection.

• Second point: Let γ : L2 → L1 be a complete meet-morphism and α(x) = u2{y ∈ L2 |
x ≤1 γ(y)}.

a) If α(x) ≤ y, then u2{y
′ ∈ L2 | x ≤1 γ(y′)} ≤ y, so u2{γ(y′) ∈ L2 | x ≤1 γ(y′)} ≤

γ(y), since γ is a complete meet-morphism, so x ≤ γ(y).

b) If x ≤ γ(y), y ∈ {y′ ∈ L2 | x ≤1 γ(y′)}, so α(x) ≤ y.

Then (α, γ) is a Galois connection.
2

Proposition 5 [10, Theorem 5.3.0.6, (1)] α is onto if and only if γ is one-to-one if and only
if α ◦ γ = λy.y.

Proof If α ◦ γ = Id, then α is onto (for all y ∈ L2, y = α(γ(y))) and γ is one-to-one (if
γ(y) = γ(y′) then y = α(γ(y)) = α(γ(y′)) = y′). This is a general property of functions, that
is not related to Galois connections.

If α is onto, let x′ such that α(x′) = y. Then x′ ≤1 γ(y), so y = α(x′) ≤2 α(γ(y)). In
general, we have α(γ(y)) ≤2 y, so y = α(γ(y)).

Assume that γ is one-to-one. We have γ ◦ α ◦ γ(x) ≥1 γ(x) since γ ◦ α ≥1 Id, and
γ ◦ α ◦ γ(x) ≤1 γ(x) since α ◦ γ ≤2 Id and γ is monotone. So γ ◦ α ◦ γ(x) = γ(x). Since γ is
one-to-one, we have α ◦ γ(x) = x. 2

The property α ◦ γ = λy.y means intuitively that the concrete properties of L1 are more
precise than the abstract properties of L2 (every abstract property has a corresponding con-
crete property which has exactly the same meaning, whereas in general one can only find an
approximate abstract property α(x) corresponding to a concrete property x). This property
can be enforced by replacing L2 by α(L1).

Remark Let σ(y) = u{y′ | γ(y′) = γ(y)}. Then α(L1) = σ(L2).

Proof First, for all y′′ ∈ σ(L2), α ◦ γ(y′′) = y′′. Indeed, let y′′ = σ(y). We always have
α◦γ(y′′) ≤ y′′. Conversely, γ ◦α◦γ(y′′) ≥ γ(y′′), since γ ◦α(x) ≥ x, and γ ◦α◦γ(y′′) ≤ γ(y′′)

8

since α ◦ γ(y′′) = y′′. So γ ◦ α ◦ γ(y′′) = γ(y′′) = γ(y). So α ◦ γ(y′′) ∈ {y′ | γ(y′) = γ(y)}, so
α ◦ γ(y′′) ≥ σ(y) = y′′.

Take y′′ ∈ σ(L2). α ◦ γ(y′′) = y′′, so y′′ ∈ α(L1).
Second, for all y′′ ∈ α(L1), σ(y′′) = y′′. Indeed, let y′′ = α(x). We always have σ(y′′) ≤

y′′. Conversely, if γ(y′) = γ(y′′), then γ(y′) = γ ◦ α(x) ≥ x, so y′ ≥ α(x) = y′′. Then
σ(y′′) = u{y′ | γ(y′) = γ(y′′)} ≥ y′′. So σ(y′′) = y′′.

Take y′′ ∈ α(L1). σ(y′′) = y′′, so y′′ ∈ σ(L2). 2

The design of an analysis is then defining α or γ and computing for each construct of the
analyzed language the image of its semantics by the abstraction α.

3.7 Computation of the abstract semantics

The abstract semantics can be systematically computed from the concrete semantics and the
Galois connection. (This an important advantage of abstract interpretation.)

Let us consider for instance the small language defined at the beginning of the course. We
start from the semantics of this language, lift it to sets to obtain the collecting semantics, and
abstract the collecting semantics (lifting to sets ordering by inclusion is important to have
lattices).

Semantics Collecting semantics Abstraction Abstract semantics

Values Z P(Z),⊆
γ
�
α

L,≤

Operators + : Z × Z → Z + : P(Z) × P(Z) → P(Z) a] +] b] = α(γ(a]) + γ(b]))

The correctness of the abstraction x] of a value x is α(x) ≤ x] (which is equivalent to x ≤ γ(x])
by definition of the Galois connection).

The correctness of the abstraction of an operator, such a +, is defined by taking the
above correctness as an invariant. That is, +] is a correct abstraction of + if and only if,
if α(a) ≤ a] and α(b) ≤ b], then α(a + b) ≤ a] +] b]. We can show that +] defined by
a] +] b] = α(γ(a]) + γ(b])) satisfies this condition. It is in fact the best possible abstraction
of + (the smallest that satisfies this condition). All operators can be abstracted in this way
by a systematic computation. (See also Proposition 10 below.)

Semantics Collecting semantics Abstraction Abstract semantics

Environments ρ : Var → Z R : P(Var → Z),⊆
γR

�
αR

R] : Var → L,≤

The abstraction of environments can be defined in two steps:

• First we abstract sets of environments to mappings from variables to sets of integers:

P(Var → Z)
γR1

�
αR1

Var → P(Z)

The abstraction is defined by αR1(R1) = λx.{ρ(x) | ρ ∈ R1}.

The concretization is defined by γR1(R
]
1) = {λx.y | y ∈ R]

1(x)}.

9

This abstraction corresponds to losing relations between variables. Only the set of
possible values of each variable is kept. (This is not the only possible way to do an
analysis, but the simplest one. Some analyses keep relations between variables. For
these analyses, we cannot use this abstraction; we must define another abstraction of
environments into an abstract lattice, which is then not of the form Var → L.)

• In the obtained mapping, we then abstract each result into L by (α, γ).

Var → P(Z)
γR2

�
αR2

Var → L

The Galois connection (αR2, γR2) is obtained by lifting (α, γ) to functions (see Propo-
sition 8 below).

The abstraction is defined by αR2(R2) = λx.α(R2(x)).

The concretization is defined by γR1(R
]
2) = λx.γ(R]

2(x)).

The Galois connection
P(Var → Z)

γR

�
αR

Var → L

is then obtained by composing the two Galois connections: αR = αR2◦αR1 and γR = γR1◦γR2.
(see Proposition 12).

We can now abstract expressions:

Semantics Collecting semantics Abstr. Abstract semantics
[[E]]ρ ∈ Z [[E]]R ∈ P(Z) [[E]]]R] ∈ L
[[x]]ρ = ρ(x) [[x]]]R] = R](x)
[[E1 + E2]]ρ = [[E1]]ρ + [[E2]]ρ [[E1 + E2]]

]R] = [[E1]]
]R] +] [[E2]]

]R]

[[E]]R is the set of evaluation of E for all environments in R, that is [[E]]R = {[[E]]ρ | ρ ∈ R}.
The correctness of the abstract semantics of expressions is expressed by: if the environment

is correctly abstracted, then the result of the expression is correctly abstracted. Formally: if
αR(R) ≤ R] then α([[E]]R) ≤ [[E]]]R].

Proof of correctness of the abstract semantics of expressions: This proof is by induction
on expressions. We handle the cases variable and +.

• α([[x]]R) = α({ρ(x) | x ∈ R}) = αR(R)(x) ≤ R](x) by correctness of R].

• We have [[E1 + E2]]R = {[[E1]]ρ + [[E2]]ρ | ρ ∈ R} ⊆ [[E1]]R + [[E2]]R. (We have only an
inclusion, because on the left of the inclusion, both E1 and E2 must be evaluated in the
same environment, whereas on the right they can be evaluated in different environments
that both belong to R.)

Then α([[E1+E2]]R) ≥ α([[E1]]R+[[E1]]R) ≥ α(γ([[E1]]
]R])+γ([[E2]]

]R])) (by correctness
on E1 and E2 by induction hypothesis). So α([[E1 + E2]]R) ≥ [[E1]]

]R] +] [[E2]]
]R].

10

One can notice that the abstract semantics of expressions is simply obtained by replacing
each concrete operator with its corresponding abstract operator (for example, + is replaced
with +]).

The computation of the abstract trace semantics follows.
If Prog(pc) = x := E, pc, R] → pc + 1, R][x 7→ [[E]]]R]]
If Prog(pc) = input x, pc, R] → pc + 1, R][x 7→ >].
If Prog(pc) = print E, pc, R] → pc + 1, R]

If Prog(pc) = if E goto n,
pc, R] → n, R].
pc, R] → pc + 1, R].

We have a non-deterministic branch for the test. For some (simple) conditions, we can
have a better analysis of tests. For instance, considering interval analysis:

If Prog(pc) = if x > 0 goto n,
pc, R] → n, R][x 7→ R](x) u [1, +∞[].
pc, R] → pc + 1, R][x 7→ R](x)u] −∞, 0]].

Indeed, when the test is true, we are sure that x is positive, and when the test is false, we
are sure that x is negative or 0. This idea can be generalized to more complex expressions
than just x > 0, by considering a backward analysis (that is, from the result of the test, we
determine possible values for the variables contained in E). We are not going to detail this
point here.

The correctness of the abstract trace semantics is that if pc1, ρ1 → pc2, ρ2, and αR({ρ1}) ≤

R]
1, then there exists R]

2, such that pc1, R
]
1 → pc2, R

]
2 and αR({ρ2}) ≤ R]

2. That is intuitively,
if a state is correctly abstracted, then the next state is also correctly abstracted.

We now abstract sets of states.

Semantics Collecting semantics Abstr. Abstract semantics

s : PC × (Var → Z) S : P(PC × (Var → Z))
γS

�
αS

S] : PC → ({⊥} ∪ (Var → L))

The abstraction is defined by αS(S) = λpc.α′

R({ρ | (pc, ρ) ∈ S}) where α′

R(R) = αR(R) when
R is not empty, and α′

R(∅) = ⊥. Defining γ′

R(⊥) = ∅ and γ′

R(R]) = γR(R]) when R] 6= ⊥,
we in fact get another Galois connection for sets of environments. (We could also consider
abstract states as partial maps, that are not defined at pc when no concrete state exists at
that pc. It is perhaps clearer to have an explicit value ⊥ for this situation.)

The concretization is defined by γS(S]) = {(pc, ρ) | ρ ∈ γ′

R(S](pc))}.
The abstract semantics has one abstract environment for each program point, giving the

possible values of variables at that program point.
We define the function post that, from a set of states, returns the set of next states. We

have post(S) = {s′ | s ∈ S, s → s′}. We can now compute the corresponding abstract function
post] such that post] ≥ αS ◦post ◦γS , that transforms an abstract state into the next abstract
state, that represents the possible next states.

αS ◦ post ◦ γS(S]) = λpc2.α
′

R({ρ2 | ρ1 ∈ γ′

R(S](pc1)), (pc1, ρ1) → (pc2, ρ2)})

11

We have (pc1, ρ1) → (pc2, ρ2) and αR({ρ1}) ≤ S](pc1), so by correctness of the abstract

transition relation, there exists R]
2 such that (pc1, S

](pc1)) → (pc2, R
]
2) and αR({ρ2}) ≤ R]

2.
So

αS ◦ post ◦ γS(S]) ≤ λpc2. t {R]
2 | ∃pc1, (pc1, S

](pc1)) → (pc2, R
]
2)}

We take
post](S]) = λpc2. t {R]

2 | ∃pc1, (pc1, S
](pc1)) → (pc2, R

]
2)}

The upper bound corresponds to the case when we reach the same program point pc2 from
several program points pc1. In this case, we have to compute an abstract environment at pc2

that is correct with respect to (that is, greater than, in the precision ordering) all abstract
environments coming from the various program points pc1. The upper bound does exactly
that.

Section 5 explain how we can compute a correct abstraction of the set of reachable states
from the function post].

Example: if we consider the example of interval analysis, we have

• [a, b] +] [a′, b′] = [a + a′, b + b′], ∅ +] x] = x] +] ∅ = ∅.

• [a, b] −] [a′, b′] = [a − b′, a′ − b], ∅ −] x] = x] −] ∅ = ∅.

The computation of other abstract operations is left to the reader. (For product and division,
note that it is a bit more complicated because of signs.) We also leave to the reader the
special cases when one bound of the interval is infinite.

For the example of program

1: input x

2: if x <= 0 goto 4

3: print 10/x

4: input y

5: print y*y*x

the abstract transition relation is

1, R] → 2, R][x 7→] −∞, +∞[]

2, R] → 4, R][x 7→ R](x)u] −∞, 0]]

2, R] → 3, R][x 7→ R](x) u [1, +∞[]

3, R] → 4, R]

4, R] → 5, R][y 7→] −∞, +∞[]

5, R] → 6, R]

12

4 Combinations of abstractions

4.1 Complex domains

4.1.1 Cardinal product

Proposition 6 Let Li, L′

i (i ∈ I) be complete lattices. If (αi, γi) is a Galois connection,

(Li,≤i)
γi

�
αi

(L′

i,≤
′

i)

then we have a Galois connection:

(×i∈ILi,≤)
γ
�
α

(×i∈IL
′

i,≤
′)

where a ≤ b if and only if for all i ∈ I, ai ≤i bi (similarly for ≤′), α((xi)i∈I) = (αi(xi))i∈I ,
and γ((yi)i∈I) = (γ(yi))i∈I .

4.1.2 Sets

Proposition 7 Let L be a complete lattice, and S a set. Let f : S → L be a function. Then
we have a Galois connection:

(P(S),⊆)
γ
�
α

(L,≤)

where α(x) = t{f(x′) | x′ ∈ x} and γ(y) = {x′ | f(x′) ≤ y}.

Proof α(x) ≤ y if and only if for all x′ ∈ x, f(x′) ≤ y if and only if x ⊆ γ(y). 2

This is what we have done when lifting the abstraction to the collecting semantics.
Example: for signs, f(x) = − if x < 0, f(x) = 0 if x = 0 and f(x) = + if x > 0.

4.1.3 Functions with fixed input

Proposition 8 Let L and L′ be complete lattices, and S a set. If (αi, γi) is a Galois connec-
tion,

(L,≤)
γ
�
α

(L′,≤′)

then we have a Galois connection:

(S → L,≤)
γ′

�

α′

(S → L′,≤′)

where the function lattices are ordered pointwise: f ≤ f ′ if and only if ∀x ∈ S, f(x) ≤ f ′(x),
α′(f) = λx.α(f(x)), and γ ′(f) = λx.γ(f(x)).

This is a particular case of the cardinal product. This is what we have done for the
environment in our small language.

13

Proposition 9 Let L and L′ be complete lattices, and S a set. If (αi, γi) is a Galois connec-
tion,

(L,≤)
γ
�
α

(L′,≤′)

then we have a Galois connection:

(S → L,≤)
γ′

�

α′

(L′,≤′)

where the function lattices are ordered pointwise: f ≤ f ′ if and only if ∀x ∈ S, f(x) ≤ f ′(x),
α′(f) = t{α(f(x)) | x ∈ S}, and γ ′(y) = {f | ∀x ∈ S, f(x) ≤ γ(y)}.

This is a much coarser approximation.
Application to arrays: An array corresponds to a function that associates to each index

the element of the array at that index. The elements of an array can be analyzed either with
one abstract value for each element of the array (this is the first abstraction), or with one
abstract element for the whole array (this is the second abstraction).

4.1.4 Functions with abstracted input; higher-order abstract interpretation

Proposition 10 1. Let L1(≤1,⊥1,>1,t1,u1) and L2(≤2,⊥2,>2,t2,u2) be complete lat-

tices. The set of monotone functions (L1

m
→L2)(≤f ,⊥f ,>f ,tf ,uf) ordered pointwise is

a complete lattice.

φ1 ≤f φ2 ⇔ ∀x ∈ X, φ1(x) ≤ φ2(x),

⊥f = λx.⊥, >f = λx.>,

tf F = λx. t {f(x) | f ∈ F}, ufF = λx. u {f(x) | f ∈ F}.

2. Let L1(≤1,⊥1,>1,t1,u1) and L2(≤2,⊥2,>2,t2,u2) be complete lattices. A function
f : L1 → L2 is additive if and only if for all S ⊆ L1, f(tS) = t{f(x) | x ∈ S}. The

set of additive functions (L1

a
→L2)(≤f ,⊥f ,>f ,tf ,uf) ordered pointwise is a complete

lattice.

φ1 ≤f φ2 ⇔ ∀x ∈ X, φ1(x) ≤ φ2(x),

⊥f = λx.⊥, >f = λx.>,

tf F = λx. t {f(x) | f ∈ F}, ufF = tf{g | ∀f ∈ F, g ≤f f}.

Proposition 11 [11, (17)] Let L1, L′

1, L2, L′

2 be complete lattices. If (α, γ) is a Galois
connection,

(L1,≤1)
γ
�
α

(L2,≤2)

and (α′, γ′) is a Galois connection,

(L′

1,≤
′

1)
γ′

�

α′

(L′

2,≤
′

2)

14

then we have a Galois connection:

(L1

m
→L′

1,≤
′′

1)
γ′′

�

α′′

(L2

m
→L′

2,≤
′′

2)

If γ and γ′ are additive,

(L1

a
→L′

1,≤
′′

1)
γ′′

�

α′′

(L2

a
→L′

2,≤
′′

2)

where the function lattices are ordered pointwise, α′′(f) = α′ ◦ f ◦ γ and γ′′(f]) = γ′ ◦ f] ◦ α.
If α ◦ γ = Id and α′ ◦ γ′ = Id then α′′ ◦ γ′′ = Id.

Proof that this is a Galois connection.

• Assume that α′′(f) ≤ f]. Then for all x], α′ ◦ f ◦ γ(x]) ≤ f](x]). So, by the definition
of Galois connections, f ◦ γ(x]) ≤ γ′ ◦ f](x]).

Then, for all x, γ′′(f])(x) = γ′ ◦ f] ◦α(x) ≥ f ◦ γ ◦α(x) by the above inequality applied
to x] = α(x). Therefore, γ ′′(f])(x) ≥ f(x) since γ ◦ α ≥ Id and f is monotone.

• Conversely, assume that γ ′′(f]) ≥ f . Then for all x, γ ′ ◦ f] ◦ α(x) ≥ f(x). So, by the
definition of Galois connections, f] ◦ α(x) ≥ α′ ◦ f(x).

Then, for all x], α′′(f)(x]) = α′◦f ◦γ(x]) ≤ f]◦α◦γ(x]) by the above inequality applied
to x = γ(x]). Therefore, α′′(f)(x]) ≤ f](x]) since α ◦ γ ≤ Id and f] is monotone.

Note that α′′ maps really monotone functions to monotone functions (if f is monotone, α′◦f◦γ
is monotone, since α′ and γ are monotone). We have the same property for γ ′′. We also have
the same properties for additivity, when γ and γ ′ are additive. (Remember that abstraction
functions are always additive.)

We leave the proof that α′′ ◦ γ′′ = Id to the reader. 2

This is a key result to abstract semantic operators. It can naturally be extended to
functions with several parameters.

Example: abstraction of + for the sign lattice.

4.2 Composition of abstractions; hierarchy of analyses

Proposition 12 Let L1, L2, L3 be complete lattices. If (α, γ) is a Galois connection,

(L1,≤1)
γ
�
α

(L2,≤2)

and (α′, γ′) is a Galois connection,

(L2,≤2)
γ′

�

α′

(L3,≤3)

then we have a Galois connection:

(L1,≤1)
γ◦γ′

�

α′◦α
(L3,≤3)

If α ◦ γ = Id and α′ ◦ γ′ = Id then (α′ ◦ α) ◦ (γ ◦ γ′) = Id.

Example: signs as abstraction of intervals.

15

4.3 Composition of analyses

4.3.1 Reduced cardinal product

You have two analyses of the same variable/program, and you want to do both of them. In
some cases, doing both analyses together can result in a precise information than doing each
analysis separately.

Example: intervals and congruences. The congruence information can reduce the interval.
This is formalized by the reduced cardinal product of the analyses.

Definition 5 Let
(L,≤)

γ1

�
α1

(L1,≤1)

and
(L,≤)

γ2

�
α2

(L2,≤2)

be two Galois connections. Their reduced cardinal product is

(L,≤)
γ
�
α

(σ(L1 × L2),≤)

where (a1, a2) ≤ (b1, b2) if and only if a1 ≤1 b1 and a2 ≤2 b2, σ : L1 ×L2 → L1 ×L2 is defined
by α(x) = (α1(x), α2(x)), γ(a1, a2) = γ1(a1) u γ2(a2), and σ(a1, a2) = u{(b1, b2) | γ(a1, a2) =
γ(b1, b2)}.

Proof that the reduced cardinal product is a Galois connection.
x ≤ γ(a1, a2) if and only if x ≤ γ1(a1) and x ≤ γ2(a2), if and only if α1(x) ≤ a1 and

α2(x) ≤ a2 if and only if α(x) ≤ (a1, a2). 2

Remark: σ is the reduction: it combines the informations of both analyses. It is used to
enforce the third property of 3, since it is in general not true after the cardinal product has
been computed.

When we compute the transformers for the product, we use F] = α ◦F ◦ γ, which is more
precise than the independent computation λ(a1, a2).(α1 ◦F ◦γ1(a1), α2 ◦F ◦γ2(a2)). Another
way of improving the precision in a combination of analyses is to compute the analyses
independently, and apply the reduction σ after each computation. Then, we also work in the
lattice σ(L1×L2), but the best precision is not always achieved (but the design is simpler: we
can use the transfer functions for the independent analyses instead of recomputing transfer
functions for the combined analyses).

Example: see [10] for a program in which the reduced product of signs and parity is more
precise than the independent analysis.

4.3.2 Reduced cardinal power

The reduced cardinal power takes into account relations between two analyses.

16

Definition 6 Let
(L,≤)

γ1

�
α1

(L1,≤1)

and
(L,≤)

γ2

�
α2

(L2,≤2)

be two Galois connections. Their reduced cardinal power is

(L,≤)
γ
�
α

(σ(L1

m
→L2),≤)

where f ≤ f ′ if and only if ∀y1 ∈ L1, f(y1) ≤ f ′(y1), α(x) = λy1.α2(xuγ1(y1)), γ(f) = t{x ∈
L | ∀y1 ∈ L1, γ1(y1) u x ≤ γ2(f(y1))}, and σ(f) = u{f ′ | γ(f) = γ(f ′)}.

Proof that the reduced cardinal power is a Galois connection.
α is a complete join-morphism (since α2 and λx.x u γ1(y1) are), and γ(y) = t{x ∈ L |

α(x) ≤ y}, so by Proposition 4, (α, γ) is a Galois connection. 2

Example: see [10].

5 Loops

Example of program with loop (see end of semantics section). Try to analyze it, and show
that we need a fixpoint.

5.1 Collecting semantics; fixpoints

A fixpoint of a function f is an element x such that f(x) = x. The least fixpoint of f is
denoted by lfp(f) and its greatest fixpoint by gfp(f). The collecting semantics can also be
defined by fixpoints.

The set of reachable states can be computed from the function post . Formally, let Fs(S) =
S0 ∪ post(S), where S0 is the set of initial states (often only one state). The set of reachable
states is then Sr = lfp(Fs) = post∗(S0) = ∪{postn(S0) | n ∈ N}

We can also compute the set of possible traces as a fixpoint. Let Ft(T) = {s | s ∈
S0} ∪ {t → s′ | t ∈ T, T ends in s, s → s′}. Then the set of possible traces is Tr = lfp(Ft).

Theorem 1 (Tarski) The set of fixpoints of a monotone operator f on a complete lattice
L(≤,⊥,>,t,u) is a non-empty complete lattice, ordered by ≤. The least fixpoint of f is

lfp(f) = u{x ∈ L | f(x) ≤ x}

and its greatest fixpoint is
gfp(f) = t{x ∈ L | x ≤ f(x)}.

17

Proof I only prove that a = u{x ∈ L | f(x) ≤ x} is the least fixpoint of f .
If f(x) ≤ x, f(a) ≤ f(x) ≤ x, so f(a) ≤ a.
Then f(a) ∈ {x ∈ L | f(x) ≤ x}, so a ≤ f(a).
Then a = f(a), so a is a fixpoint of f .
Consider another fixpoint x: f(x) = x, so x ∈ {x ∈ L | f(x) ≤ x}, so a ≤ x. Then a is

the least fixpoint of f . 2

The next few lines are for those who have heard about ordinals. The others can ignore.
The least fixpoint could in fact be obtained by a transfinite iteration of f from ⊥. If f λ(⊥),
where λ is an ordinal, is defined by

f0(⊥) = ⊥

fλ+1(⊥) = f(fλ(⊥))

fλ(⊥) = t{fβ(⊥) | β < λ} if λ is a limit ordinal,

this transfinite sequence eventually stabilizes, and its limit is lfp(f) (this is a particular case
of [3, Th. 2.5.2.0.2]).

Definition 7 (CPO) Let S(≤) be a partially ordered set (poset). A chain C = (xn)n∈N is
a monotone sequence of elements of S: x0 ≤ x1 ≤ ... ≤ xn ≤ xn+1 ≤

A complete partial order (CPO) is a poset S(≤) such that S has a least element ⊥ and
every chain C has a least upper bound tC.

Let S(≤) and S ′(≤′) be two CPOs. An operator f : S → S ′ is continuous if and only if
for all chains C ⊆ S, f(tC) = t′f(C).

Theorem 2 (Kleene) Let S(≤) be a CPO. Let f : S → S be a continuous operator. Then
f has a least fixpoint:

lfp(f) = t{f i(⊥) | i ∈ N}.

A complete lattice is also a CPO, then Kleene’s theorem can be applied: it shows that
the above sequence stops at ordinal ω if f is continuous.

5.2 Abstraction of fixpoints

Proposition 13 Let F be a monotone operator on a complete lattice F : L1 → L1, and
(α, γ) be a Galois connection between L1 and L2. Then γ(lfp(α ◦ F ◦ γ)) ≥ lfp(F), that is,
lfp(α ◦ F ◦ γ) ≥ α(lfp(F)).

This is a very important result in abstract interpretation: it is the key to the analysis of loops.

Proof

F (γ(lfp(α ◦ F ◦ γ))) ≤ (γ ◦ α ◦ F ◦ γ)(lfp(α ◦ F ◦ γ))

≤ γ(lfp(α ◦ F ◦ γ))

so a = γ(lfp(α ◦ F ◦ γ)) is a post-fixpoint of F (F (a) ≤ a). Knowing that lfp(F) = u{x ∈ L |
f(x) ≤ x}, lfp(F) ≤ a. 2

18

Example with signs (take again the same program of the end of the semantics section).

Then, we compute the fixpoint of F]
S = αS ◦ FS ◦ γS . We have F]

S(S]) = αS(S0 ∪

post(γS(S]))) = S]
0 t post](S]) with S]

0 = αS(S0) and post] = αS ◦ post ◦ γS .
Alternatively, we can also start from traces, to obtain the same result. The abstraction

of traces is:

• Let T be a set of traces. αT (T) = αS({s | ∃t ∈ T, s ∈ t})

• Let T] be an abstract trace. γT (T]) = {t | ∀s ∈ t, s ∈ γS(T])}

The operator F]
T of which we compute the fixpoint is F] = αT ◦ FT ◦ γT , and

F]
T (T]) = αT ◦ FT ◦ γT (T])

= αT ◦ FT ({t | ∀s ∈ t, s ∈ γS(T])})

= αT ({s (one state trace) | s ∈ S0} ∪ {t → s′ | ∀s′′ ∈ t, s′′ ∈ γS(T]), t ends in s, s → s′})

= αS({s′ | s′ ∈ S0 or ∃s such that s ∈ γS(T]), s → s′})

= S]
0 t post](T])

so we have in fact F]
S = F]

T . The interest of using traces appears for more precise analyses,
that aim to determine properties depending not only on the set of reachable states, but also
on the possible traces.

Example: we can run the fixpoint iteration on the examples of programs of the semantics
section, for the interval analysis.

x y x y x y x y x y x y

1: input x ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
2: if x <= 0 goto 4 IZ ∅ IZ ∅ IZ ∅ IZ ∅ IZ ∅
3: print 10/x I+ ∅ I+ ∅ I+ ∅ I+ ∅
4: input y I− ∅ IZ ∅ IZ ∅ IZ ∅
5: print y*y*x I− IZ IZ IZ IZ IZ

6: I− IZ IZ IZ

where IZ =] −∞, +∞[, I+ = [1, +∞[, I− =] −∞, 0].
On each line, we give the abstract environment at the corresponding program point (that

is, before the execution of the corresponding instruction). This abstract environment contains
two abstract values, one for x, one for y.

The first column (after the program itself) is the initial state: the abstract environment
at the first program point is empty: all variables are mapped to ∅. Other program points are
not yet found reachable. The next columns represent the successive iterations of F]

S .

In practice, we have one abstract environment at each program point, and we iterate. Let
R]

i the information at pc = i. We project the iteration on each program point:

• Initial state: R]
i ≥ S]

0(i)

19

• Iteration: R]
pc′

≥ post](λpc.R]
pc)(pc′), or simply: if pc, R]

pc → pc′, R]
2 then R]

pc′
≥ R]

2.

For the last example of program of section semantics, the equations are:

R]
1 ≥ {x 7→ ∅, y 7→ Z}

R]
2 ≥ R]

1[x 7→ [0, 0]]

R]
3 ≥ R]

2

R]
5 ≥ R]

2

R]
4 ≥ R]

3[x 7→ [a + 1, b + 1]] if R]
3(x) = [a, b]

R]
2 ≥ R]

4

The variable y is considered as initialized with any value. (We could also have added input y

at the beginning of the program.) Note that the test if x >= y does not give any information
on the interval of x since y can have any value.

The equations can be iterated in any order, provided that, when a parameter of an equation
is modified, then the equation is executed again at some point. This is called chaotic iterations.

5.3 Widening [12]

Example with intervals.

input n;

x := 0;

2: x++;

print x;

if x < n goto 2

The analysis does not terminate, because the interval becomes larger and large without sta-
bilizing. This can happen when the height of the lattice is not finite. We need to “accelerate
the convergence” of the iterations. This can be done by a widening.

Definition 8 (Widening) A widening operator is a function 5 : L×L → L such that for
all x, y in L, x ≤ x 5 y, y ≤ x 5 y, and for all increasing chains x0 ≤ x1 ≤ . . ., the increasing
chain y0 = x0, . . . , yi+1 = yi

5 xi+1, . . . is not strictly increasing.

Proposition 14 Assuming F monotone and 5 a widening, the sequence

X0 = ⊥

Xi+1 = Xi if F (Xi) ≤ Xi

= Xi
5 F (Xi) otherwise

is ultimately stationary and its limit is greater than (or equal to) lfp(F).

20

Proof The sequence Xi is increasing. Indeed, Xi+1 ≥ F (Xi). This is obvious when Xi+1 =
Xi. Otherwise, Xi+1 = Xi

5F (Xi) ≥ Xi. Define x0 = ⊥, xi+1 = F (Xi). This sequence is also
increasing since F is monotone. Taking y0 = x0 = ⊥, yi+1 = yi

5 xi+1 = yi
5 F (Xi), yi = Xi

by induction. Moreover, yi is not strictly increasing, so there exists i such that Xi+1 = Xi.
That is, either Xi

5 F (Xi) = Xi, so F (Xi) ≤ Xi
5 F (Xi) = Xi, so this case is impossible, or

F (Xi) ≤ Xi. Now, the sequence is stationary, since F (Xi+1) = F (Xi) ≤ Xi = Xi+1 so the
first case applies forever.

When the sequence stabilizes, F (Xi) ≤ Xi as shown above. Since the least fixpoint is the
greatest lower bound of the post-fixpoints of F , Xi ≥ lfp(F). 2

Numerous variants are possible. We could use a different widening for each iterate, or a
widening that depends on the history of all previous iterates.

Example: widening for intervals ∅ 5 X = X 5 ∅ = X, [a, b] 5 [a′, b′] = [if a′ < a then −
∞ else a, if b′ > b then +∞ else b]. We will run this widening on the example in the course.

5.4 Narrowing

However, the widening may lead to an important loss of precision. Example with intervals.

x := 0;

2: x++;

print x;

if x < 5 goto 2

We obtain [0,∞[as interval for x, while in reality x ∈ [0, 5]. We can regain some precision
by performing decreasing iterations after the widening sequence has stabilized.

Definition 9 (Narrowing) A narrowing operator is a function ∆ : L × L → L such that
for all x, y in L, y ≤ x implies y ≤ x∆y ≤ x, and for all decreasing chains x0 ≥ x1 ≥ . . ., the
decreasing chain defined by y0 = x0, . . . , yi+1 = yi∆xi+1, . . . is not strictly decreasing.

Proposition 15 Assume that F is monotone, and ∆ is a narrowing. If X0 ≥ lfp(F) and
F (X0) ≤ X0, then the sequence Xi+1 = Xi∆F (Xi) is decreasing, ultimately stationary and
its limit is greater than (or equal to) lfp(F).

Proof First, for all i, Xi ≥ lfp(F) and F (Xi) ≤ Xi. True for X0. If it is true for i,
Xi+1 = Xi∆F (Xi), then F (Xi) ≤ Xi∆F (Xi) = Xi+1 ≤ Xi, so Xi+1 ≥ F (Xi) ≥ F (lfp(F)) =
lfp(F) (since Xi ≥ lfp(F) and F is monotone). F (Xi+1) ≤ F (Xi) since Xi+1 ≤ Xi, so
F (Xi+1) ≤ Xi+1.

We have also seen that Xi+1 ≤ Xi so the sequence is decreasing.
Take xi+1 = F (Xi). The sequence xi is decreasing. Take y0 = x0, . . . , yi+1 = yi∆xi+1.

Then yi = Xi, so Xi is not strictly decreasing. When Xi+1 = Xi, the sequence stabilizes. 2

If F (Xi) = Xi then Xi+1 = Xi, so if X0 is a fixpoint of F , it cannot be improved by narrowing.
The iterations with narrowing can be stopped at any point, since all iterates are greater

than the fixpoint. Waiting until the sequence stabilizes yields the best precision. Note that

21

it is also possible to iterate simply F after computing the sequence with widening, but then,
we have to set an arbitrary limit on the number of iterations, because we have no guarantee
that the decreasing iterations of F will terminate.

Example with intervals: ∅∆X = X∆∅ = ∅, [a, b]∆[a′, b′] = [if a = ∞ then a′ else a, if b =
+∞ then b′ else b]. This narrowing improves infinite bounds only. In the previous example
of program, we now find the good bound for x. (We will show that in the course.)

One interesting question is whether all analyses that can be done with widening and
narrowing can be done with lattices of finite height. The answer is no, see [12]. In contrast,
all analyses done with an abstraction can be done with a widening/narrowing in the concrete
lattice.

5.5 Iteration strategies [1, 18]

At least when we have no widening/narrowing, the result of the computation does not depend
on the order in which we iterate the equations, so we can iterate them in any order (chaotic
iterations).

However, choosing a good iteration ordering can reduce the computation time dramati-
cally. The main idea is that, when x depends on y, we try to compute y first, then x. Of
course, this is not possible when there are cycles in the dependencies (that’s why we need to
iterate).

Here, we give a good iteration algorithm, taken from [18].

1. Build the dependency graph of the equations: nodes n are unknowns, edges are n → n′

when n′ depends on n.

2. Split the dependency graph into strongly connected components (see Tarjan’s scc al-
gorithm [22] and below). In an oriented graph, a strongly connected component is a
subset S of the nodes of the graph, such that for all nodes n and n′ in S, there exists a
path from n to n′ and from n′ to n.

3. Consider the strongly connected components in topological order. In an acyclic oriented
graph, the topological order is defined by n ≤ n′ if and only if there exists a path from n
to n′. After merging all nodes of the strongly connected components in the dependency
graph, the remaining graph is acyclic, so we can compute the topological order on it.

Inside each strongly connected component, iterate in the order given by the scc building
(reverse order of nodelist below, since nodelist contains the node in reverse depen-
dency order, and it is better iterating in dependency order: if the value at n′ depends
on the value at n, try to compute n first). At each iteration, apply all equations of the
scc, and repeat until the scc stabilizes.

In the presence of widening/narrowing, it is enough to apply them at least once per cycle, for
example at the end of back edges of the dependency graph.

A theoretically better algorithm (that is, better in the worst case) has been given in [1].
In practice, the one above is quite good, probably better than [1], and certainly simpler.

22

Here is Tarjan’s algo. We do not detail how this algorithm works, since it is a bit far away
from abstract interpretation strictly speaking. For general information on graph algorithms
(including another algorithm for splitting into strongly connected components), see [2].

age := 0

nodelist := []

for all nodes n, n.age := -1

depth n =

if n.age = -1 then

begin

age := age + 1;

nodelist := n :: nodelist;

n.age := age;

age_sons := min { depth n’ | n -> n’ is an edge }

if age_sons >= n.age then

begin

(* top node of a scc *)

(* An scc is the set of nodes in nodelist until n (n included)

Do the desired treatment on that scc here *)

nodelist := the tail of nodelist, after n

return age_sons

end

else

return age_sons

end

else

return n.age

6 Abstract domains

6.1 Numerical abstract domains

6.1.1 Constants

⊥ ≤ c ≤ >

6.1.2 Intervals

∅ ≤ [a, b], with a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b.

6.1.3 Linear equalities [19]

a1x1 + . . . + anxn = c

23

6.1.4 Polyhedra [14]

a1x1 + . . . + anxn ≤ c

6.1.5 Octagons [20]

+/ − x + / − y ≤ c.

6.1.6 Congruences [17]

a1x1 + . . . + anxn ≡ c(d)

6.2 Other abstract domains

6.2.1 Alias analysis [15, 21, 23]

6.2.2 Escape analysis [16]

7 Abstract interpretation frameworks [11]

7.1 Upper closure operators

Definition 10 An upper closure operator ρ is a function ρ : L → L, where L is a complete
lattice, such that ρ is monotone, ρ(x) ≥ x, and ρ ◦ ρ = ρ.

Proposition 16 1. If (α, γ) is a Galois connection from L1 to L2, then γ ◦α is an upper
closure operator on L1.

2. If ρ is an upper closure operator on L1, then (ρ, Id) is a Galois connection from L1 to
ρ(L1).

So we have equivalence between the formalism of Galois connections and the one of upper
closure operators.

7.2 Concretization

When there is no best approximation (so we cannot define an abstraction α), we can work
with only a concretization relation γ. y is a correct approximation of x if and only if x ≤ γ(y).

With such a framework, we cannot systematically compute the analysis, but we can prove
the correctness of an analysis.

7.3 Correctness relation

The most general framework, but also the weakest, is to use neither an abstraction nor a
concretization, but only a correctness relation σ. y is a correct approximation of x if and only
if σ(x, y).

If we work with only one lattice (like in the upper closure operator framework), the
correctness relation is simply x ≤ y.

24

8 Abstract interpretation as a “thinking tool”

Abstract interpretation can be used to formalize many concepts in the area of programming
languages. Here are some examples with references to the corresponding papers. (Not very
easy to read!)

8.1 Hierarchy of semantics of programming languages [4]

Semantics are abstractions of other semantics (the trace semantics being the most concrete
one). For instance, the set of states considered above is an abstraction of the set of traces.

8.2 Types as abstract interpretation [5]

8.3 Program transformations [13]

9 Some introductory papers

The following papers can be a good starting point to study abstract interpretation: [6–8]. The
papers [7] and [8] give some intuition without too much formalism. [6] is much more formal.
If you skip the more complex formulae (or if you are very courageous to decrypt them!), it
can be a good example of how to formally design an analysis by abstract interpretation.

Then, [11] and [12] can be good papers to continue with. The first papers, [9] and [10] are
also interesting, but rather difficult to read.

Papers by Patrick Cousot are available at http://www.di.ens.fr/~cousot/COUSOTpapers.shtml.

References

[1] François Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. of
the International Conference on Formal Methods in Programming and their Applications,
volume 735 of Lecture Notes on Computer Science, pages 128–141. Springer Verlag, 1993.

[2] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to algo-
rithms. MIT Press, 1990.

[3] Patrick Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique des programmes. PhD thesis,
Université Scientifique et Médicale de Grenoble, 21 March 1978.

[4] Patrick Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Electronic Notes in Theoretical Computer Science, 6, 1997.
URL: http://www.elsevier.nl/locate/entcs/volume6.html, 25 pages.

[5] Patrick Cousot. Types as Abstract Interpretations. In 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’97), pages 316–331, Paris,
France, January 1997.

25

[6] Patrick Cousot. The Calculational Design of a Generic Abstract Interpreter. In M. Broy
and R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F. IOS
Press, Amsterdam, 1999.

[7] Patrick Cousot. Abstract Interpretation: Achievements and Perspec-
tives. In Proceedings of the SSGRR 2000 Computer & eBusiness Inter-
national Conference, Compact disk paper 224 and electronic proceedings
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm, L’Aquila, Italy, July 31
– August 6 2000. Scuola Superiore G. Reiss Romoli.

[8] Patrick Cousot. Abstract Interpretation Based Formal Methods and Future Challenges,
invited paper. In R. Wilhelm, editor, ” Informatics — 10 Years Back, 10 Years Ahead ”,
volume 2000 of Lecture Notes on Computer Science, pages 138–156. Springer Verlag,
2001.

[9] Patrick Cousot and Radhia Cousot. Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Conference Record of the 4th Annual ACM Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, California, January 1977.

[10] Patrick Cousot and Radhia Cousot. Systematic Design of Program Analysis Frame-
works. In Conference Record of the Sixth Annual ACM Symposium on Principles of
Programming Languages, pages 269–282, San Antonio, Texas, 29-31 January 1979.

[11] Patrick Cousot and Radhia Cousot. Abstract Interpretation Frameworks. Journal of
Logic and Computation, 2(4):511–547, August 1992.

[12] Patrick Cousot and Radhia Cousot. Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation. In Maurice Bruynooghe and
Martin Wirsing, editors, Proceedings of the fourth international symposium PLILP’92
(Programming Language Implementation and Logic Programming), Lecture Notes on
Computer Science, pages 269–295. Springer Verlag, August 1992.

[13] Patrick Cousot and Radhia Cousot. Systematic design of program transformation frame-
works by abstract interpretation. In Conference Record of the Twentyninth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 178–
190, Portland, Oregon, January 2002. ACM Press.

[14] Patrick Cousot and Nicolas Halbwachs. Automatic Discovery of Linear Restraints Among
Variables of a Program. In Conference Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages, pages 84–96, January 1978.

[15] Alain Deutsch. Interprocedural May-Alias Analysis for Pointers: Beyond k-limiting.
In Proceedings of the SIGPLAN ’94 Conference on Programming Language Design and
Implementation, pages 230–241, Orlando, Florida, 20-24 June 1994. ACM Press.

26

[16] David Gay and Bjarne Steensgaard. Fast Escape Analysis and Stack Allocation for
Object-Based Programs. In David A. Watt, editor, Compiler Construction, 9th Interna-
tional Conference, CC’2000, volume 1781 of Lecture Notes on Computer Science, pages
82–93. Springer Verlag, March 2000.

[17] Philippe Granger. Static Analysis of Linear Congruence Equalities among Variables of a
Program. In Proceedings of the International Joint Conference on Theory and Practice
of Software Development (TAPSOFT’91), volume 1, pages 169–192, April 1991.

[18] Susan Horwitz, Alan Demers, and Tim Teitelbaum. An Efficient General Iterative Algo-
rithm for Dataflow Analysis. Acta Informatica, 24(6):679–694, 1987.

[19] Michael Karr. Affine Relationships Among Variables of a Program. Acta Informatica,
6:133–151, 1976.

[20] Antoine Miné. The octagon abstract domain. In Analysis, Slicing, and Transformation
(AST 2001) in WCRE 2001, pages 310–319. IEEE Computer Society Press, October
2001.

[21] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the
Twentythird Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 32–41, January 1996.

[22] Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

[23] Arnaud Venet. Nonuniform Alias Analysis of Recursive Data Structures and Arrays. In
Manuel V. Hermenegildo and German Puebla, editors, Static Analysis, 9th International
Symposium, SAS 2002, volume 2477 of Lecture Notes on Computer Science, pages 36–51,
Madrid, Spain, September 2002. Springer Verlag.

27

